# Vector Bundlles and K-Theory 

Version 1.3, July 2001

Allen Hatcher

Copyright © 2001 by Allen Hatcher
Paper or electronic copies for noncommercial use may be made freely without explicit permission from the author.

## Table of Contents

Chapter 1. Vector Bundles
1.1. Basic Definitions and Constructions ..... 1Sections 3. Direct Sums 5. Pullback Bundles 5. Inner Products 7.Subbundles 8. Tensor Products 9. Associated Bundles 11.
1.2. Classifying Vector Bundles ..... 12
The Universal Bundle 12. Vector Bundles over Spheres 16.
Orientable Vector Bundles 21. A Cell Structure on Grassmann Manifolds 22.
Appendix: Paracompactness 24.
Chapter 2. Complex K-Theory
2.1. The Functor $K(X)$ ..... 28
Ring Structure 31. Cohomological Properties 32.
2.2. Bott Periodicity ..... 39
Clutching Functions 38. Linear Clutching Functions 43.
Conclusion of the Proof 45.
2.3. Adams' Hopf Invariant One Theorem ..... 48
Adams Operations 51. The Splitting Principle 55.
2.4. Further Calculations ..... 61
The Thom Isomorphism 61.
Chapter 3. Characteristic Classes
3.1. Stiefel-Whitney and Chern Classes ..... 64
Axioms and Construction 65. Cohomology of Grassmannians 70.
Applications of $w_{1}$ and $c_{1} 73$.
3.2. The Chern Character ..... 74
The J-Homomorphism 77.
3.3. Euler and Pontryagin Classes ..... 84
The Euler Class 88. Pontryagin Classes 91.

## Chappter I Vector Bundlles

## 1. Basic Definitions and Constructions

Vector bundles are special sorts of fiber bundles with additional algebraic structure. Here is the basic definition. An $n$-dimensional vector bundle is a map $p: E \rightarrow B$ together with a real vector space structure on $p^{-1}(b)$ for each $b \in B$, such that the following local triviality condition is satisfied: There is a cover of $B$ by open sets $U_{\alpha}$ for each of which there exists a homeomorphism $h_{\alpha}: p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$ taking $p^{-1}(b)$ to $\{b\} \times \mathbb{R}^{n}$ by a vector space isomorphism for each $b \in U_{\alpha}$. Such an $h_{\alpha}$ is called a local trivialization of the vector bundle. The space $B$ is called the base space, $E$ is the total space, and the vector spaces $p^{-1}(b)$ are the fibers. Often one abbreviates terminology by just calling the vector bundle $E$, letting the rest of the data be implicit. We could equally well take $\mathbb{C}$ in place of $\mathbb{R}$ as the scalar field here, obtaining the notion of a complex vector bundle.

If we modify the definition by dropping all references to vector spaces and replace $\mathbb{R}^{n}$ by an arbitrary space $F$, then we have the definition of a fiber bundle: a map $p: E \rightarrow B$ such that there is a cover of $B$ by open sets $U_{\alpha}$ for each of which there exists a homeomorphism $h_{\alpha}: p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times F$ taking $p^{-1}(b)$ to $\{b\} \times F$ for each $b \in U_{\alpha}$.

Here are some examples of vector bundles:
(1) The product or trivial bundle $E=B \times \mathbb{R}^{n}$ with $p$ the projection onto the first factor.
(2) If we let $E$ be the quotient space of $I \times \mathbb{R}$ under the identifications $(0, t) \sim(1,-t)$, then the projection $I \times \mathbb{R} \rightarrow I$ induces a map $p: E \rightarrow S^{1}$ which is a 1-dimensional vector bundle, or line bundle. Since $E$ is homeomorphic to a Möbius band with its boundary circle deleted, we call this bundle the Möbius bundle.
(3) The tangent bundle of the unit sphere $S^{n}$ in $\mathbb{R}^{n+1}$, a vector bundle $p: E \rightarrow S^{n}$ where $E=\left\{(x, v) \in S^{n} \times \mathbb{R}^{n+1} \mid x \perp v\right\}$ and we think of $v$ as a tangent vector to $S^{n}$ by translating it so that its tail is at the head of $x$, on $S^{n}$. The map $p: E \rightarrow S^{n}$
sends $(x, v)$ to $x$. To construct local trivializations, choose any point $b \in S^{n}$ and let $U_{b} \subset S^{n}$ be the open hemisphere containing $b$ and bounded by the hyperplane through the origin orthogonal to $b$. Define $h_{b}: p^{-1}\left(U_{b}\right) \rightarrow U_{b} \times p^{-1}(b) \approx U_{b} \times \mathbb{R}^{n}$ by $h_{b}(x, v)=\left(x, \pi_{b}(v)\right)$ where $\pi_{b}$ is orthogonal projection onto the tangent plane $p^{-1}(b)$. Then $h_{b}$ is a local trivialization since $\pi_{b}$ restricts to an isomorphism of $p^{-1}(x)$ onto $p^{-1}(b)$ for each $x \in U_{b}$.
(4) The normal bundle to $S^{n}$ in $\mathbb{R}^{n+1}$, a line bundle $p: E \rightarrow S^{n}$ with $E$ consisting of pairs $(x, v) \in S^{n} \times \mathbb{R}^{n+1}$ such that $v$ is perpendicular to the tangent plane to $S^{n}$ at $x$, i.e., $v=t x$ for some $t \in \mathbb{R}$. The map $p: E \rightarrow S^{n}$ is again given by $p(x, v)=x$. As in the previous example, local trivializations $h_{b}: p^{-1}\left(U_{b}\right) \rightarrow U_{b} \times \mathbb{R}$ can be obtained by orthogonal projection of the fibers $p^{-1}(x)$ onto $p^{-1}(b)$ for $x \in U_{b}$.
(5) The canonical line bundle $p: E \rightarrow \mathbb{R} P^{n}$. Thinking of $\mathbb{R} P^{n}$ as the space of lines in $\mathbb{R}^{n+1}$ through the origin, $E$ is the subspace of $\mathbb{R} P^{n} \times \mathbb{R}^{n+1}$ consisting of pairs $(\ell, v)$ with $v \in \ell$, and $p(\ell, v)=\ell$. Again local trivializations can be defined by orthogonal projection. We could also take $n=\infty$ and get the canonical line bundle $E \rightarrow \mathbb{R} P^{\infty}$.
(6) The orthogonal complement $E^{\perp}=\left\{(\ell, v) \in \mathbb{R} \mathrm{P}^{n} \times \mathbb{R}^{n+1} \mid v \perp \ell\right\}$ of the canonical line bundle. The projection $p: E^{\perp} \rightarrow \mathbb{R} \mathbb{P}^{n}, p(\ell, v)=\ell$, is a vector bundle with fibers the orthogonal subspaces $\ell^{\perp}$, of dimension $n$. Local trivializations can be obtained once more by orthogonal projection.

An isomorphism between vector bundles $p_{1}: E_{1} \rightarrow B$ and $p_{2}: E_{2} \rightarrow B$ over the same base space $B$ is a homeomorphism $h: E_{1} \rightarrow E_{2}$ taking each fiber $p_{1}^{-1}(b)$ to the corresponding fiber $p_{2}^{-1}(b)$ by a linear isomorphism. Thus an isomorphism preserves all the structure of a vector bundle, so isomorphic bundles are often regarded as the same. We use the notation $E_{1} \approx E_{2}$ to indicate that $E_{1}$ and $E_{2}$ are isomorphic.

For example, the normal bundle of $S^{n}$ in $\mathbb{R}^{n+1}$ is isomorphic to the product bundle $S^{n} \times \mathbb{R}$ by the map $(x, t x) \mapsto(x, t)$. The tangent bundle to $S^{1}$ is also isomorphic to the trivial bundle $S^{1} \times \mathbb{R}$, via $\left(e^{i \theta}\right.$, ite $\left.e^{i \theta}\right) \mapsto\left(e^{i \theta}, t\right)$, for $e^{i \theta} \in S^{1}$ and $t \in \mathbb{R}$.

As a further example, the Möbius bundle in (2) above is isomorphic to the canonical line bundle over $\mathbb{R} P^{1} \approx S^{1}$. Namely, $\mathbb{R} P^{1}$ is swept out by a line rotating through an angle of $\pi$, so the vectors in these lines sweep out a rectangle $[0, \pi] \times \mathbb{R}$ with the two ends $\{0\} \times \mathbb{R}$ and $\{\pi\} \times \mathbb{R}$ identified. The identification is $(0, x) \sim(\pi,-x)$ since rotating a vector through an angle of $\pi$ produces its negative.

The zero section of a vector bundle $p: E \rightarrow B$ is the union of the zero vectors in all the fibers. This is a subspace of $E$ which projects homeomorphically onto $B$ by $p$. Moreover, $E$ deformation retracts onto its zero section via the homotopy $f_{t}(v)=$ $(1-t) v$ given by scalar multiplication of vectors $v \in E$. Thus all vector bundles over $B$ have the same homotopy type.

One can sometimes distinguish nonisomorphic bundles by looking at the complement of the zero section since any vector bundle isomorphism $h: E_{1} \rightarrow E_{2}$ must take
the zero section of $E_{1}$ onto the zero section of $E_{2}$, hence the complements of the zero sections in $E_{1}$ and $E_{2}$ must be homeomorphic. For example, the Möbius bundle is not isomorphic to the product bundle $S^{1} \times \mathbb{R}$ since the complement of the zero section in the Möbius bundle is connected while for the product bundle the complement of the zero section is not connected. This method for distinguishing vector bundles can also be used with more refined topological invariants such as $H_{n}$ in place of $H_{0}$.

We shall denote the set of isomorphism classes of $n$-dimensional real vector bundles over $B$ by $\operatorname{Vect}^{n}(B)$, and its complex analogue by $\operatorname{Vect}_{\mathbb{C}}^{n}(B)$. For those who worry about set theory, we are using the term 'set' here in a naive sense. It follows from Theorem 1.8 later in the chapter that $\operatorname{Vect}^{n}(B)$ and $\operatorname{Vect}_{\mathbb{C}}^{n}(B)$ are indeed sets in the strict sense when $B$ is paracompact.

For example, Vect ${ }^{1}\left(S^{1}\right)$ contains exactly two elements, the Möbius bundle and the product bundle. This will be a rather trivial application of later theory, but it might be an interesting exercise to prove it now directly from the definitions.

## Sections

A section of a bundle $p: E \rightarrow B$ is a map $s: B \rightarrow E$ such that $p s=\mathbb{1}$, or equivalently, $s(b) \in p^{-1}(b)$ for all $b \in B$. We have already mentioned the zero section, which is the section whose values are all zero. At the other extreme would be a section whose values are all nonzero. Not all vector bundles have such a nonvanishing section. Consider for example the tangent bundle to $S^{n}$. Here a section is just a tangent vector field to $S^{n}$. One of the standard first applications of homology theory is the theorem that $S^{n}$ has a nonvanishing vector field iff $n$ is odd. From this it follows that the tangent bundle of $S^{n}$ is not isomorphic to the trivial bundle if $n$ is even and nonzero, since the trivial bundle obviously has a nonvanishing section, and an isomorphism between vector bundles takes nonvanishing sections to nonvanishing sections.

In fact, an $n$-dimensional bundle $p: E \rightarrow B$ is isomorphic to the trivial bundle iff it has $n$ sections $s_{1}, \cdots, s_{n}$ such that $s_{1}(b), \cdots, s_{n}(b)$ are linearly independent in each fiber $p^{-1}(b)$. For if one has such sections $s_{i}$, the map $h: B \times \mathbb{R}^{n} \rightarrow E$ given by $h\left(b, t_{1}, \cdots, t_{n}\right)=\sum_{i} t_{i} s_{i}(b)$ is a linear isomorphism in each fiber, and is continuous, as can be verified by composing with a local trivialization $p^{-1}(U) \rightarrow U \times \mathbb{R}^{n}$. Hence $h$ is an isomorphism by the following useful technical result:

Lemma 1.1. A continuous map $h: E_{1} \rightarrow E_{2}$ between vector bundles over the same base space $B$ is an isomorphism if it takes each fiber $p_{1}^{-1}(b)$ to the corresponding fiber $p_{2}^{-1}(b)$ by a linear isomorphism.

Proof: The hypothesis implies that $h$ is one-to-one and onto. What must be checked is that $h^{-1}$ is continuous. This is a local question, so we may restrict to an open set $U \subset B$ over which $E_{1}$ and $E_{2}$ are trivial. Composing with local trivializations reduces to the case of an isomorphism $h: U \times \mathbb{R}^{n} \rightarrow U \times \mathbb{R}^{n}$ of the form $h(x, v)=\left(x, g_{x}(v)\right)$.

Here $g_{x}$ is an element of the group $G L_{n}(\mathbb{R})$ of invertible linear transformations of $\mathbb{R}^{n}$ which depends continuously on $x$. This means that if $g_{x}$ is regarded as an $n \times n$ matrix, its $n^{2}$ entries depend continuously on $x$. The inverse matrix $g_{x}^{-1}$ also depends continuously on $x$ since its entries can be expressed algebraically in terms of the entries of $g_{x}$, namely, $g_{x}^{-1}$ is $1 /\left(\operatorname{det} g_{x}\right)$ times the classical adjoint matrix of $g_{x}$. Therefore $h^{-1}(x, v)=\left(x, g_{x}^{-1}(v)\right)$ is continuous.

As an example, the tangent bundle to $S^{1}$ is trivial because it has the section $\left(x_{1}, x_{2}\right) \mapsto\left(-x_{2}, x_{1}\right)$ for $\left(x_{1}, x_{2}\right) \in S^{1}$. In terms of complex numbers, if we set $z=x_{1}+i x_{2}$ then this section is $z \mapsto i z$ since $i z=-x_{2}+i x_{1}$.

There is an analogous construction using quaternions instead of complex numbers. Quaternions have the form $z=x_{1}+i x_{2}+j x_{3}+k x_{4}$, and form a division algebra $\mathbb{H}$ via the multiplication rules $i^{2}=j^{2}=k^{2}=-1, i j=k, j k=i, k i=j, j i=-k$, $k j=-i$, and $i k=-j$. If we identify $\mathbb{H}$ with $\mathbb{R}^{4}$ via the coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, then the unit sphere is $S^{3}$ and we can define three sections of its tangent bundle by the formulas

$$
\begin{array}{lll}
z \mapsto i z & \text { or } & \left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(-x_{2}, x_{1},-x_{4}, x_{3}\right) \\
z \mapsto j z & \text { or } & \left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(-x_{3}, x_{4}, x_{1},-x_{2}\right) \\
z \mapsto k z & \text { or } & \left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(-x_{4},-x_{3}, x_{2}, x_{1}\right)
\end{array}
$$

It is easy to check that the three vectors in the last column are orthogonal to each other and to ( $x_{1}, x_{2}, x_{3}, x_{4}$ ), so we have three linearly independent nonvanishing tangent vector fields on $S^{3}$, and hence the tangent bundle to $S^{3}$ is trivial.

The underlying reason why this works is that quaternion multiplication satisfies $|z w|=|z||w|$, where $|\cdot|$ is the usual norm of vectors in $\mathbb{R}^{4}$. Thus multiplication by a quaternion in the unit sphere $S^{3}$ is an isometry of $\mathfrak{H}$. The quaternions $1, i, j, k$ form the standard orthonormal basis for $\mathbb{R}^{4}$, so when we multiply them by an arbitrary unit quaternion $z \in S^{3}$ we get a new orthonormal basis $z, i z, j z, k z$.

The same constructions work for the Cayley octonions, a division algebra structure on $\mathbb{R}^{8}$. Thinking of $\mathbb{R}^{8}$ as $\mathbb{H} \times \mathbb{H}$, multiplication of octonions is defined by $\left(z_{1}, z_{2}\right)\left(w_{1}, w_{2}\right)=\left(z_{1} w_{1}-\bar{w}_{2} z_{2}, z_{2} \bar{w}_{1}+w_{2} z_{1}\right)$ and satisfies the key property $|z w|=$ $|z||w|$. This leads to the construction of seven orthogonal tangent vector fields on the unit sphere $S^{7}$, so the tangent bundle to $S^{7}$ is also trivial. As we shall show in $\S 2.3$, the only spheres with trivial tangent bundle are $S^{1}, S^{3}$, and $S^{7}$.

One final general remark before continuing with our next topic: Another way of characterizing the trivial bundle $E \approx B \times \mathbb{R}^{n}$ is to say that there is a continuous projection map $E \rightarrow \mathbb{R}^{n}$ which is a linear isomorphism on each fiber, since such a projection together with the bundle projection $E \rightarrow B$ gives an isomorphism $E \approx B \times \mathbb{R}^{n}$.

## Direct Sums

As a preliminary to defining a direct sum operation on vector bundles, we make two simple observations:
(a) Given a vector bundle $p: E \rightarrow B$ and a subspace $A \subset B$, then $p: p^{-1}(A) \rightarrow A$ is clearly a vector bundle. We call this the restriction of E over $A$.
(b) Given vector bundles $p_{1}: E_{1} \rightarrow B_{1}$ and $p_{2}: E_{2} \rightarrow B_{2}$, then $p_{1} \times p_{2}: E_{1} \times E_{2} \rightarrow B_{1} \times B_{2}$ is also a vector bundle, with fibers the products $p_{1}^{-1}\left(b_{1}\right) \times p_{2}^{-1}\left(b_{2}\right)$. For if we have local trivializations $h_{\alpha}: p_{1}^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$ and $h_{\beta}: p_{2}^{-1}\left(U_{\beta}\right) \rightarrow U_{\beta} \times \mathbb{R}^{m}$ for $E_{1}$ and $E_{2}$, then $h_{\alpha} \times h_{\beta}$ is a local trivialization for $E_{1} \times E_{2}$.

Now suppose we are given two vector bundles $p_{1}: E_{1} \rightarrow B$ and $p_{2}: E_{2} \rightarrow B$ over the same base space $B$. The restriction of the product $E_{1} \times E_{2}$ over the diagonal $B=$ $\{(b, b) \in B \times B\}$ is then a vector bundle, called the direct sum $E_{1} \oplus E_{2} \rightarrow B$. Thus

$$
E_{1} \oplus E_{2}=\left\{\left(v_{1}, v_{2}\right) \in E_{1} \times E_{2} \mid p_{1}\left(v_{1}\right)=p_{2}\left(v_{2}\right)\right\}
$$

The fiber of $E_{1} \oplus E_{2}$ over a point $b \in B$ is the product, or direct sum, of the vector spaces $p_{1}^{-1}(b)$ and $p_{2}^{-1}(b)$.

The direct sum of two trivial bundles is again a trivial bundle, clearly, but the direct sum of nontrivial bundles can also be trivial. For example, the direct sum of the tangent and normal bundles to $S^{n}$ in $\mathbb{R}^{n+1}$ is the trivial bundle $S^{n} \times \mathbb{R}^{n+1}$ since elements of the direct sum are triples $(x, v, t x) \in S^{n} \times \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ with $x \perp v$, and the map $(x, v, t x) \mapsto(x, v+t x)$ gives an isomorphism of the direct sum bundle with $S^{n} \times \mathbb{R}^{n+1}$. So the tangent bundle to $S^{n}$ is stably trivial: it becomes trivial after taking the direct sum with a trivial bundle.

As another example, the direct sum $E \oplus E^{\perp}$ of the canonical line bundle $E \rightarrow \mathbb{R} P^{n}$ with its orthogonal complement, defined in example (6) above, is isomorphic to the trivial bundle $\mathbb{R} \mathrm{P}^{n} \times \mathbb{R}^{n+1}$ via the map $(\ell, v, w) \mapsto(\ell, v+w)$ for $v \in \ell$ and $w \perp \ell$. Specializing to the case $n=1$, both $E$ and $E^{\perp}$ are isomorphic to the Möbius bundle over $\mathbb{R} \mathrm{P}^{1}=S^{1}$, so the direct sum of the Möbius bundle with itself is the trivial bundle. This is just saying that if one takes a slab $I \times \mathbb{R}^{2}$ and glues the two faces $\{0\} \times \mathbb{R}^{2}$ and $\{1\} \times \mathbb{R}^{2}$ to each other via a 180 degree rotation of $\mathbb{R}^{2}$, the resulting vector bundle over $S^{1}$ is the same as if the gluing were by the identity map. In effect, one can gradually decrease the angle of rotation of the gluing map from 180 degrees to 0 without changing the vector bundle.

## Pullback Bundles

Next we describe a procedure for using a map $f: A \rightarrow B$ to transform vector bundles over $B$ into vector bundles over $A$. Given a vector bundle $p: E \rightarrow B$, let
$f^{*}(E)=\{(a, v) \in A \times E \mid f(a)=p(v)\}$. This subspace of $A \times E$ fits into the commutative diagram at the right where $\pi(a, v)=a$ and $\tilde{f}(a, v)=v$. It is not hard to see that $\pi: f^{*}(E) \rightarrow A$ is also a vector bundle with fibers of the same dimension as in $E$. For example, we could say that $f^{*}(E)$ is the restriction of the vector bundle $\mathbb{1} \times p: A \times E \rightarrow A \times B$
 over the graph of $f,\{(a, f(a)) \in A \times B\}$, which we identify with $A$ via the projection $(a, f(a)) \mapsto a$. The vector bundle $f^{*}(E)$ is called the pullback or induced bundle.

As a trivial example, if $f$ is the inclusion of a subspace $A \subset B$, then $f^{*}(E)$ is isomorphic to the restriction $p^{-1}(A)$ via the map $(a, v) \mapsto v$, since the condition $f(a)=p(v)$ just says that $v \in p^{-1}(a)$. So restriction over subspaces is a special case of pullback.

An interesting example which is small enough to be visualized completely is the pullback of the Möbius bundle $E \rightarrow S^{1}$ by the two-to-one covering map $f: S^{1} \rightarrow S^{1}$, $f(z)=z^{2}$. In this case the pullback $f^{*}(E)$ is a two-sheeted covering space of $E$ which can be thought of as a coat of paint applied to 'both sides' of the Möbius bundle. Since $E$ has one half-twist, $f^{*}(E)$ has two half-twists, hence is the trivial bundle. More generally, if $E_{n}$ is the pullback of the Möbius bundle by the map $z \mapsto z^{n}$, then $E_{n}$ is the trivial bundle for $n$ even and the Möbius bundle for $n$ odd.

Some elementary properties of pullbacks, whose proofs are one-minute exercises in definition-chasing, are:
(i) $(f g)^{*}(E) \approx g^{*}\left(f^{*}(E)\right)$.
(ii) If $E_{1} \approx E_{2}$ then $f^{*}\left(E_{1}\right) \approx f^{*}\left(E_{2}\right)$.
(iii) $f^{*}\left(E_{1} \oplus E_{2}\right) \approx f^{*}\left(E_{1}\right) \oplus f^{*}\left(E_{2}\right)$.

Now we come to our first important result:
|| Theorem 1.2. Given a vector bundle $p: E \rightarrow B$ and homotopic maps $f_{0}, f_{1}: A \rightarrow B$, then the induced bundles $f_{0}^{*}(E)$ and $f_{1}^{*}(E)$ are isomorphic if $A$ is paracompact.

All the spaces one ordinarily encounters in algebraic and geometric topology are paracompact, for example compact Hausdorff spaces and CW complexes; see the Appendix to this chapter for more information about this.

Proof: Let $F: A \times I \rightarrow B$ be a homotopy from $f_{0}$ to $f_{1}$. The restrictions of $F^{*}(E)$ over $A \times\{0\}$ and $A \times\{1\}$ are then $f_{0}^{*}(E)$ and $f_{1}^{*}(E)$. So the theorem will follow from:
|| $\begin{aligned} & \text { Proposition 1.3. The restrictions of a vector bundle } E \rightarrow X \times I \text { over } X \times\{0\} \text { and } \\ & X \times\{1\} \text { are isomorphic if } X \text { is paracompact. }\end{aligned}$
Proof: We need two preliminary facts:
(1) A vector bundle $p: E \rightarrow X \times[a, b]$ is trivial if its restrictions over $X \times[a, c]$ and $X \times[c, b]$ are both trivial for some $c \in(a, b)$. To see this, let these restrictions be $E_{1}=p^{-1}(X \times[a, c])$ and $E_{2}=p^{-1}(X \times[c, b])$, and let $h_{1}: E_{1} \rightarrow X \times[a, c] \times \mathbb{R}^{n}$
and $h_{2}: E_{2} \rightarrow X \times[c, b] \times \mathbb{R}^{n}$ be isomorphisms. These isomorphisms may not agree on $p^{-1}(X \times\{c\})$, but they can be made to agree by replacing $h_{2}$ by its composition with the isomorphism $X \times[c, b] \times \mathbb{R}^{n} \rightarrow X \times[c, b] \times \mathbb{R}^{n}$ which on each slice $X \times\{x\} \times \mathbb{R}^{n}$ is given by $h_{1} h_{2}^{-1}: X \times\{c\} \times \mathbb{R}^{n} \rightarrow X \times\{c\} \times \mathbb{R}^{n}$. Once $h_{1}$ and $h_{2}$ agree on $E_{1} \cap E_{2}$, they define a trivialization of $E$.
(2) For a vector bundle $p: E \rightarrow X \times I$, there exists an open cover $\left\{U_{\alpha}\right\}$ of $X$ so that each restriction $p^{-1}\left(U_{\alpha} \times I\right) \rightarrow U_{\alpha} \times I$ is trivial. This is because for each $x \in X$ we can find open neighborhoods $U_{x, 1}, \cdots, U_{x, k}$ in $X$ and a partition $0=t_{0}<t_{1}<\cdots<t_{k}=1$ of $[0,1]$ such that the bundle is trivial over $U_{x, i} \times\left[t_{i-1}, t_{i}\right]$, using compactness of $[0,1]$. Then by (1) the bundle is trivial over $U_{\alpha} \times I$ where $U_{\alpha}=U_{x, 1} \cap \cdots \cap U_{x, k}$.

Now we prove the proposition. By (2), we can choose an open cover $\left\{U_{\alpha}\right\}$ of $X$ so that $E$ is trivial over each $U_{\alpha} \times I$. Lemma 1.19 in the Appendix to this chapter asserts that there is a countable cover $\left\{V_{k}\right\}_{k \geq 1}$ of $X$ and a partition of unity $\left\{\varphi_{k}\right\}$ with $\varphi_{k}$ supported in $V_{k}$, such that each $V_{k}$ is a disjoint union of open sets each contained in some $U_{\alpha}$. This means that $E$ is trivial over each $V_{k} \times I$.

For $k \geq 0$, let $\psi_{k}=\varphi_{1}+\cdots+\varphi_{k}$, with $\psi_{0}=0$. Let $X_{k}$ be the graph of $\psi_{k}$, so $X_{k}=\left\{\left(x, \psi_{k}(x)\right) \in X \times I\right\}$, and let $p_{k}: E_{k} \rightarrow X_{k}$ be the restriction of the bundle $E$ over $X_{k}$. Choosing a trivialization of $E$ over $V_{k} \times I$, the natural projection homeomorphism $X_{k} \rightarrow X_{k-1}$ lifts to an isomorphism $h_{k}: E_{k} \rightarrow E_{k-1}$ which is the identity outside $p_{k}^{-1}\left(V_{k}\right)$. The infinite composition $h=h_{1} h_{2} \cdots$ is then a well-defined isomorphism from the restriction of $E$ over $X \times\{0\}$ to the restriction over $X \times\{1\}$ since near each point $x \in X$ only finitely many $\varphi_{i}$ 's are nonzero, which implies that for large enough $k, h_{k}=\mathbb{1}$ over a neighborhood of $x$.

Corollary 1.4. A homotopy equivalence $f: A \rightarrow B$ of paracompact spaces induces $a$ bijection $f^{*}: \operatorname{Vect}^{n}(B) \rightarrow \operatorname{Vect}^{n}(A)$. In particular, every vector bundle over a contractible paracompact base is trivial.

Proof: If $g$ is a homotopy inverse of $f$ then we have $f^{*} g^{*}=\mathbb{1}^{*}=\mathbb{1}$ and $g^{*} f^{*}=$ $\mathbb{1}^{*}=\mathbb{1}$.

Theorem 1.2 holds for fiber bundles as well as vector bundles, with the same proof.

## Inner Products

An inner product on a vector bundle $p: E \rightarrow B$ is a map $\langle\rangle:, E \oplus E \rightarrow \mathbb{R}$ which restricts in each fiber to an inner product, i.e., a positive definite symmetric bilinear form.

Proposition 1.5. An inner product exists for a vector bundle $p: E \rightarrow B$ if $B$ is paracompact.

Proof: An inner product for $p: E \rightarrow B$ can be constructed by first using local trivializations $h_{\alpha}: p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$, to pull back the standard inner product in $\mathbb{R}^{n}$ to an inner product $\langle\cdot, \cdot\rangle_{\alpha}$ on $p^{-1}\left(U_{\alpha}\right)$, then setting $\langle v, w\rangle=\sum_{\beta} \varphi_{\beta} p(v)\langle v, w\rangle_{\alpha(\beta)}$ where $\left\{\varphi_{\beta}\right\}$ is a partition of unity with the support of $\varphi_{\beta}$ contained in $U_{\alpha(\beta)}$.

In the case of complex vector bundles one can construct Hermitian inner products in the same way.

Having an inner product on a vector bundle $E$, lengths of vectors are defined, and so we can speak of the associated unit sphere bundle $S(E) \rightarrow B$, a fiber bundle with fibers the spheres consisting of all vectors of length 1 in fibers of $E$. Similarly there is a disk bundle $D(E) \rightarrow B$ with fibers the disks of vectors of length less than or equal to 1 . It is possible to describe $S(E)$ without reference to an inner product, as the quotient of the complement of the zero section in $E$ obtained by identifying each nonzero vector with all positive scalar multiples of itself. It follows that $D(E)$ can also be defined without invoking a metric, namely as the mapping cylinder of the projection $S(E) \rightarrow B$.

The canonical line bundle $E \rightarrow \mathbb{R} P^{n}$ has as its unit sphere bundle $S(E)$ the space of unit vectors in lines through the origin in $\mathbb{R}^{n+1}$. Since each unit vector uniquely determines the line containing it, $S(E)$ is the same as the space of unit vectors in $\mathbb{R}^{n+1}$, i.e., $S^{n}$. It follows that canonical line bundle is nontrivial if $n>0$ since for the trivial bundle $\mathbb{R P}^{n} \times \mathbb{R}$ the unit sphere bundle is $\mathbb{R}^{n} \times S^{0}$, which is not homeomorphic to $S^{n}$.

Similarly, in the complex case the canonical line bundle $E \rightarrow \mathbb{C} \mathbb{P}^{n}$ has $S(E)$ equal to the unit sphere $S^{2 n+1}$ in $\mathbb{C}^{n+1}$. Again if $n>0$ this is not homeomorphic to the unit sphere bundle of the trivial bundle, which is $\mathbb{C} P^{n} \times S^{1}$, so the canonical line bundle is nontrivial.

## Subbundles

A vector subbundle of a vector bundle $p: E \rightarrow B$ has the natural definition: a subspace $E_{0} \subset E$ intersecting each fiber of $E$ in a vector subspace, such that the restriction $p: E_{0} \rightarrow B$ is a vector bundle.

Proposition 1.6. If $E \rightarrow B$ is a vector bundle over a paracompact base $B$ and $E_{0} \subset E$ $\|$ is a vector subbundle, then there is a vector subbundle $E_{0}^{\perp} \subset E$ such that $E_{0} \oplus E_{0}^{\perp} \approx E$.

Proof: With respect to a chosen inner product on $E$, let $E_{0}^{\perp}$ be the subspace of $E$ which in each fiber consists of all vectors orthogonal to vectors in $E_{0}$. We claim that the natural projection $E_{0}^{\perp} \rightarrow B$ is a vector bundle. If this is so, then $E_{0} \oplus E_{0}^{\perp}$ is isomorphic to $E$ via the map $(v, w) \mapsto v+w$, using Lemma 1.1.

To see that $E_{0}^{\perp}$ satisfies the local triviality condition for a vector bundle, note first that we may assume $E$ is the product $B \times \mathbb{R}^{n}$ since the question is local in $B$.

Since $E_{0}$ is a vector bundle, of dimension $m$ say, it has $m$ independent local sections $b \mapsto\left(b, s_{i}(b)\right)$ near each point $b_{0} \in B$. We may enlarge this set of $m$ independent local sections of $E_{0}$ to a set of $n$ independent local sections $b \mapsto\left(b, s_{i}(b)\right)$ of $E$ by choosing $s_{m+1}, \cdots, s_{n}$ first in the fiber $p^{-1}\left(b_{0}\right)$, then taking the same vectors for all nearby fibers, since if $s_{1}, \cdots, s_{m}, s_{m+1}, \cdots, s_{n}$ are independent at $b_{0}$, they will remain independent for nearby $b$ by continuity of the determinant function. Apply the GramSchmidt orthogonalization process to $s_{1}, \cdots, s_{m}, s_{m+1}, \cdots, s_{n}$ in each fiber, using the given inner product, to obtain new sections $s_{i}^{\prime}$. The explicit formulas for the GramSchmidt process show the $s_{i}^{\prime}$ 's are continuous. The sections $s_{i}^{\prime}$ allow us to define a local trivialization $h: p^{-1}(U) \rightarrow U \times \mathbb{R}^{n}$ with $h\left(b, s_{i}^{\prime}(b)\right)$ equal to the $i^{t h}$ standard basis vector of $\mathbb{R}^{n}$. This $h$ carries $E_{0}$ to $U \times \mathbb{R}^{m}$ and $E_{0}^{\perp}$ to $U \times \mathbb{R}^{n-m}$, so $h \mid E_{0}^{\perp}$ is a local trivialization of $E_{0}^{\perp}$.

## Tensor Products

In addition to direct sum, a number of other algebraic constructions with vector spaces can be extended to vector bundles. One which is particularly important for K-theory is tensor product. For vector bundles $p_{1}: E_{1} \rightarrow B$ and $p_{2}: E_{2} \rightarrow B$, let $E_{1} \otimes E_{2}$, as a set, be the disjoint union of the vector spaces $p_{1}^{-1}(x) \otimes p_{2}^{-1}(x)$ for $x \in B$. The topology on this set is defined in the following way. Choose isomorphisms $h_{i}: p_{i}^{-1}(U) \rightarrow U \times \mathbb{R}^{n_{i}}$ for each open set $U \subset B$ over which $E_{1}$ and $E_{2}$ are trivial. Then a topology $\mathcal{T}_{U}$ on the set $p_{1}^{-1}(U) \otimes p_{2}^{-1}(U)$ is defined by letting the fiberwise tensor product map $h_{1} \otimes h_{2}: p_{1}^{-1}(U) \otimes p_{2}^{-1}(U) \rightarrow U \times\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right)$ be a homeomorphism. The topology $\mathcal{T}_{U}$ is independent of the choice of the $h_{i}$ 's since any other choices are obtained by composing with isomorphisms of $U \times \mathbb{R}^{n_{i}}$ of the form $(x, v) \mapsto\left(x, g_{i}(x)(v)\right)$ for continuous maps $g_{i}: U \rightarrow G L_{n_{i}}(\mathbb{R})$, hence $h_{1} \otimes h_{2}$ changes by composing with analogous isomorphisms of $U \times\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right)$ whose second coordinates $g_{1} \otimes g_{2}$ are continuous maps $U \rightarrow G L_{n_{1} n_{2}}(\mathbb{R})$, since the entries of the matrices $g_{1}(x) \otimes g_{2}(x)$ are the products of the entries of $g_{1}(x)$ and $g_{2}(x)$. When we replace $U$ by an open subset $V$, the topology on $p_{1}^{-1}(V) \otimes p_{2}^{-1}(V)$ induced by $\mathcal{T}_{U}$ is the same as the topology $\mathcal{T}_{V}$ since local trivializations over $U$ restrict to local trivializations over $V$. Hence we get a well-defined topology on $E_{1} \otimes E_{2}$ making it a vector bundle over $B$.

There is another way to look at this construction that takes as its point of departure a general method for constructing vector bundles we have not mentioned previously. If we are given a vector bundle $p: E \rightarrow B$ and an open cover $\left\{U_{\alpha}\right\}$ of $B$ with local trivializations $h_{\alpha}: p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$, then we can reconstruct $E$ as the quotient space of the disjoint union $\coprod_{\alpha}\left(U_{\alpha} \times \mathbb{R}^{n}\right)$ obtained by identifying ( $\left.x, v\right) \in U_{\alpha} \times \mathbb{R}^{n}$ with $h_{\beta} h_{\alpha}^{-1}(x, v) \in U_{\beta} \times \mathbb{R}^{n}$ whenever $x \in U_{\alpha} \cap U_{\beta}$. The functions $h_{\beta} h_{\alpha}^{-1}$ can be viewed as maps $g_{\beta \alpha}: U_{\alpha} \cap U_{\beta} \rightarrow G L_{n}(\mathbb{R})$. These satisfy the 'cocycle condition' $g_{\gamma \beta} g_{\beta \alpha}=g_{\gamma \alpha}$ on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Any collection of 'gluing functions' $g_{\beta \alpha}$ satisfying this condition can be used to construct a vector bundle $E \rightarrow B$.

In the case of tensor products, suppose we have two vector bundles $E_{1} \rightarrow B$ and $E_{2} \rightarrow B$. We can choose an open cover $\left\{U_{\alpha}\right\}$ with both $E_{1}$ and $E_{2}$ trivial over each $U_{\alpha}$, and so obtain gluing functions $g_{\beta \alpha}^{i}: U_{\alpha} \cap U_{\beta} \rightarrow G L_{n_{i}}(\mathbb{R})$ for each $E_{i}$. Then the gluing functions for the bundle $E_{1} \otimes E_{2}$ are the tensor product functions $g_{\beta \alpha}^{1} \otimes g_{\beta \alpha}^{2}$ assigning to each $x \in U_{\alpha} \cap U_{\beta}$ the tensor product of the two matrices $g_{\beta \alpha}^{1}(x)$ and $g_{\beta \alpha}^{2}(x)$.

It is routine to verify that the tensor product operation for vector bundles over a fixed base space is commutative, associative, and has an identity element, the trivial line bundle. It is also distributive with respect to direct sum.

If we restrict attention to line bundles, then $\operatorname{Vect}^{1}(B)$ is an abelian group with respect to the tensor product operation. The inverse of a line bundle $E \rightarrow B$ is obtained by replacing its gluing matrices $g_{\beta \alpha}(x) \in G L_{1}(\mathbb{R})$ with their inverses. The cocycle condition is preserved since $1 \times 1$ matrices commute. If we give $E$ an inner product, we may rescale local trivializations $h_{\alpha}$ to be isometries, taking vectors in fibers of $E$ to vectors in $\mathbb{R}^{1}$ of the same length. Then all the values of the gluing functions $g_{\beta \alpha}$ are $\pm 1$, being isometries of $\mathbb{R}$. The gluing functions for $E \otimes E$ are the squares of these $g_{\beta \alpha}$ 's, hence are identically 1 , so $E \otimes E$ is the trivial line bundle. Thus each element of $\operatorname{Vect}^{1}(B)$ is its own inverse. As we shall see in $\S 3.1$, the group $\operatorname{Vect}^{1}(B)$ is isomorphic to $H^{1}\left(B ; \mathbb{Z}_{2}\right)$ when $B$ is homotopy equivalent to a CW complex.

These tensor product constructions work equally well for complex vector bundles. Tensor product again makes $\operatorname{Vect}_{\mathbb{C}}^{1}(B)$ into an abelian group, but after rescaling the gluing functions $g_{\beta \alpha}$ for a complex line bundle $E$, the values are complex numbers of norm 1 , not necessarily $\pm 1$, so we cannot expect $E \otimes E$ to be trivial. In $\S 3.1$ we will show that the group $\operatorname{Vect}_{\mathbb{C}}^{1}(B)$ is isomorphic to $H^{2}(B ; \mathbb{Z})$ when $B$ is homotopy equivalent to a CW complex.

We may as well mention here another general construction for complex vector bundles $E \rightarrow B$, the notion of the conjugate bundle $\bar{E} \rightarrow B$. As a topological space, $\bar{E}$ is the same as $E$, but the vector space structure in the fibers is modified by redefining scalar multiplication by the rule $\lambda(v)=\bar{\lambda} v$ where the right side of this equation means scalar multiplication in $E$ and the left side means scalar multiplication in $\bar{E}$. This implies that local trivializations for $\bar{E}$ are obtained from local trivializations for $E$ by composing with the coordinatewise conjugation map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ in each fiber. The effect on the gluing maps $g_{\beta \alpha}$ is to replace them by their complex conjugates as well. Specializing to line bundles, we then have $E \otimes \bar{E}$ isomorphic to the trivial line bundle since its gluing maps have values $z \bar{z}=1$ for $z$ a unit complex number. Thus conjugate bundles provide inverses in $\operatorname{Vect}_{\mathbb{C}}^{1}(B)$.

Besides tensor product of vector bundles, another construction useful in K-theory is the exterior power $\lambda^{k}(E)$ of a vector bundle $E$. Recall from linear algebra that the exterior power $\lambda^{k}(V)$ of a vector space $V$ is the quotient of the $k$-fold tensor product $V \otimes \cdots \otimes V$ by the subspace generated by vectors of the form $v_{1} \otimes \cdots \otimes v_{k}-$ $\operatorname{sgn}(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}$ where $\sigma$ is a permutation of the subscripts and $\operatorname{sgn}(\sigma)=$
$\pm 1$ is its sign, +1 for an even permutation and -1 for an odd permutation. If $V$ has dimension $n$ then $\lambda^{k}(V)$ has dimension $\binom{n}{k}$. Now to define $\lambda^{k}(E)$ for a vector bundle $p: E \rightarrow B$ the procedure follows closely what we did for tensor product. We first form the disjoint union of the exterior powers $\lambda^{k}\left(p^{-1}(x)\right)$ of all the fibers $p^{-1}(x)$, then we define a topology on this set via local trivializations. The key fact about tensor product which we needed before was that the tensor product $\varphi \otimes \psi$ of linear transformations $\varphi$ and $\psi$ depends continuously on $\varphi$ and $\psi$. For exterior powers the analogous fact is that a linear map $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ induces a linear map $\lambda^{k}(\varphi): \lambda^{k}\left(\mathbb{R}^{n}\right) \rightarrow \lambda^{k}\left(\mathbb{R}^{n}\right)$ which depends continuously on $\varphi$. This holds since $\lambda^{k}(\varphi)$ is a quotient map of the $k$-fold tensor product of $\varphi$ with itself.

## Associated Bundles

There are a number of geometric operations on vector spaces which can also be performed on vector bundles. As an example we have already seen, consider the operation of taking the unit sphere or unit disk in a vector space with an inner product. Given a vector bundle $E \rightarrow B$ with an inner product, we can then perform the operation in each fiber, producing the sphere bundle $S(E) \rightarrow B$ and the disk bundle $D(E) \rightarrow B$. Here are some more examples:
(1) Associated to a vector bundle $E \rightarrow B$ is the projective bundle $P(E) \rightarrow B$, where $P(E)$ is the space of all lines through the origin in all the fibers of $E$. We topologize $P(E)$ as the quotient of the sphere bundle $S(E)$ obtained by factor out scalar multiplication in each fiber. Over a neighborhood $U$ in $B$ where $E$ is a product $U \times \mathbb{R}^{n}$, this quotient is $U \times \mathbb{R} \mathrm{P}^{n-1}$, so $P(E)$ is a fiber bundle over $B$ with fiber $\mathbb{R} \mathrm{P}^{n-1}$, with respect to the projection $P(E) \rightarrow B$ which sends each line in the fiber of $E$ over a point $b \in B$ to $b$. We could just as well start with an $n$-dimensional vector bundle over $\mathbb{C}$, and then $P(E)$ would have fibers $\mathbb{C} \mathrm{P}^{n-1}$.
(2) For an $n$-dimensional vector bundle $E \rightarrow B$, the associated flag bundle $F(E) \rightarrow B$ has total space $F(E)$ the subspace of the $n$-fold product of $P(E)$ with itself consisting of $n$-tuples of orthogonal lines in fibers of $E$. The fiber of $F(E)$ is thus the flag manifold $F\left(\mathbb{R}^{n}\right)$ consisting of $n$-tuples of orthogonal lines through the origin in $\mathbb{R}^{n}$. Local triviality follows as in the preceding example. More generally, for any $k \leq n$ one could take $k$-tuples of orthogonal lines in fibers of $E$ and get a bundle $F_{k}(E) \rightarrow B$.
(3) As a refinement of the last example, one could form the Stiefel bundle $V_{k}(E) \rightarrow B$, where points of $V_{k}(E)$ are $k$-tuples of orthogonal unit vectors in fibers of $E$, so $V_{k}(E)$ is a subspace of the product of $k$ copies of $S(E)$. The fiber of $V_{k}(E)$ is the Stiefel manifold $V_{k}\left(\mathbb{R}^{n}\right)$ of orthonormal $k$-frames in $\mathbb{R}^{n}$.
(4) Generalizing $P(E)$, there is the Grassmann bundle $G_{k}(E) \rightarrow B$ of $k$-dimensional linear subspaces of fibers of $E$. This is the quotient space of $V_{k}(E)$ obtained by identifying two $k$-frames if they span the same subspace of a fiber. The fiber of $G_{k}(E)$ is the Grassmann manifold $G_{k}\left(\mathbb{R}^{n}\right)$ of $k$-planes through the origin in $\mathbb{R}^{n}$.

Some of these associated fiber bundles have natural vector bundles lying over them. For example, there is a canonical line bundle $L \rightarrow P(E)$ where $L=\{(\ell, v) \in$ $P(E) \times E \mid v \in \ell\}$. Similarly, over the flag bundle $F(E)$ there are $n$ line bundles $L_{i}$ consisting of all vectors in the $i^{\text {th }}$ line of an $n$-tuple of orthogonal lines in fibers of $E$. The direct sum $L_{1} \oplus \cdots \oplus L_{n}$ is then equal to the pullback of $E$ over $F(E)$ since a point in the pullback consists of an $n$-tuple of lines $\ell_{1} \perp \cdots \perp \ell_{n}$ in a fiber of $E$ together with a vector $v$
 in this fiber, and $v$ can be expressed uniquely as a sum $v=v_{1}+\cdots+v_{n}$ with $v_{i} \in \ell_{i}$. Thus we see an interesting fact: For every vector bundle there is a pullback which splits as a direct sum of line bundles. This observation plays a role in the so-called 'splitting principle,' as we shall see in Corollary 2.23 and Proposition 3.3.

## 2. Classifying Vector Bundles

In this section we give two homotopy-theoretic descriptions of $\operatorname{Vect}^{n}(X)$. The first works for arbitrary paracompact spaces $X$, and is therefore of considerable theoretical importance. The second is restricted to the case that $X$ is a suspension, but is more amenable to the explicit calculation of a number of simple examples, such as $X=S^{n}$ for small values of $n$.

## The Universal Bundle

We will show that there is a special $n$-dimensional vector bundle $E_{n} \rightarrow G_{n}$ with the property that all $n$-dimensional bundles over paracompact base spaces are obtainable as pullbacks of this single bundle. When $n=1$ this bundle will be just the canonical line bundle over $\mathbb{R} P^{\infty}$, defined earlier. The generalization to $n>1$ will consist in replacing $\mathbb{R} P^{\infty}$, the space of 1 -dimensional vector subspaces of $\mathbb{R}^{\infty}$, by the space of $n$-dimensional vector subspaces of $\mathbb{R}^{\infty}$.

First we define the Grassmann manifold $G_{n}\left(\mathbb{R}^{k}\right)$ for nonnegative integers $n \leq k$. As a set this is the collection of all $n$-dimensional vector subspaces of $\mathbb{R}^{k}$, that is, $n$-dimensional planes in $\mathbb{R}^{k}$ passing through the origin. To define a topology on $G_{n}\left(\mathbb{R}^{k}\right)$ we first define the Stiefel manifold $V_{n}\left(\mathbb{R}^{k}\right)$ to be the space of orthonormal $n$-frames in $\mathbb{R}^{k}$, in other words, $n$-tuples of orthonormal vectors in $\mathbb{R}^{k}$. This is a subspace of the product of $n$ copies of the unit sphere $S^{k-1}$, namely, the subspace of orthogonal $n$-tuples. It is a closed subspace since orthogonality of two vectors can be expressed by an algebraic equation. Hence $V_{n}\left(\mathbb{R}^{k}\right)$ is compact since the product of spheres is compact. There is a natural surjection $V_{n}\left(\mathbb{R}^{k}\right) \rightarrow G_{n}\left(\mathbb{R}^{k}\right)$ sending an $n$-frame to the subspace it spans, and $G_{n}\left(\mathbb{R}^{k}\right)$ is topologized by giving it the quotient topology with respect to this surjection. So $G_{n}\left(\mathbb{R}^{k}\right)$ is compact as well. Later in this
section we will construct a finite CW complex structure on $G_{n}\left(\mathbb{R}^{k}\right)$ and in the process show that it is Hausdorff and a manifold of dimension $n(k-n)$.

Define $E_{n}\left(\mathbb{R}^{k}\right)=\left\{(\ell, v) \in G_{n}\left(\mathbb{R}^{k}\right) \times \mathbb{R}^{k} \mid v \in \ell\right\}$. The inclusions $\mathbb{R}^{k} \subset \mathbb{R}^{k+1} \subset \cdots$ give inclusions $G_{n}\left(\mathbb{R}^{k}\right) \subset G_{n}\left(\mathbb{R}^{k+1}\right) \subset \cdots$ and $E_{n}\left(\mathbb{R}^{k}\right) \subset E_{n}\left(\mathbb{R}^{k+1}\right) \subset \cdots$. We set $G_{n}=G_{n}\left(\mathbb{R}^{\infty}\right)=\bigcup_{k} G_{n}\left(\mathbb{R}^{k}\right)$ and $E_{n}=E_{n}\left(\mathbb{R}^{\infty}\right)=\bigcup_{k} E_{n}\left(\mathbb{R}^{k}\right)$ with the weak, or direct limit, topologies. Thus a set in $G_{n}\left(\mathbb{R}^{\infty}\right)$ is open iff it intersects each $G_{n}\left(\mathbb{R}^{k}\right)$ in an open set, and similarly for $E_{n}\left(\mathbb{R}^{\infty}\right)$.

Lemma 1.7. The projection $p: E_{n}\left(\mathbb{R}^{k}\right) \rightarrow G_{n}\left(\mathbb{R}^{k}\right), p(\ell, v)=\ell$, is a vector bundle., both for finite and infinite $k$.
Proof: First suppose $k$ is finite. For $\ell \in G_{n}\left(\mathbb{R}^{k}\right)$, let $\pi_{\ell}: \mathbb{R}^{k} \rightarrow \ell$ be orthogonal projection and let $U_{\ell}=\left\{\ell^{\prime} \in G_{n}\left(\mathbb{R}^{k}\right) \mid \pi_{\ell}\left(\ell^{\prime}\right)\right.$ has dimension $\left.n\right\}$. In particular, $\ell \in U_{\ell}$. We will show that $U_{\ell}$ is open in $G_{n}\left(\mathbb{R}^{k}\right)$ and that the map $h: p^{-1}\left(U_{\ell}\right) \rightarrow U_{\ell} \times \ell \approx U_{\ell} \times \mathbb{R}^{n}$ defined by $h\left(\ell^{\prime}, v\right)=\left(\ell^{\prime}, \pi_{\ell}(v)\right)$ is a local trivialization of $E_{n}\left(\mathbb{R}^{k}\right)$.

For $U_{\ell}$ to be open is equivalent to its preimage in $V_{n}\left(\mathbb{R}^{k}\right)$ being open. This preimage consists of orthonormal frames $v_{1}, \cdots, v_{n}$ such that $\pi_{\ell}\left(v_{1}\right), \cdots, \pi_{\ell}\left(v_{n}\right)$ are independent. Let $A$ be the matrix of $\pi_{\ell}$ with respect to the standard basis in the domain $\mathbb{R}^{k}$ and any fixed basis in the range $\ell$. The condition on $v_{1}, \cdots, v_{n}$ is then that the $n \times n$ matrix with columns $A v_{1}, \cdots, A v_{n}$ have nonzero determinant. Since the value of this determinant is obviously a continuous function of $v_{1}, \cdots, v_{n}$, it follows that the frames $v_{1}, \cdots, v_{n}$ yielding a nonzero determinant form an open set in $V_{n}\left(\mathbb{R}^{k}\right)$.

It is clear that $h$ is a bijection which is a linear isomorphism on each fiber. We need to check that $h$ and $h^{-1}$ are continuous. For $\ell^{\prime} \in U_{\ell}$ there is a unique invertible linear map $L_{\ell^{\prime}}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ restricting to $\pi_{\ell}$ on $\ell^{\prime}$ and the identity on $\ell^{\perp}=\operatorname{Ker} \pi_{\ell}$. We claim that $L_{\ell^{\prime}}$, regarded as a $k \times k$ matrix, depends continuously on $\ell^{\prime}$. Namely, we can write $L_{\ell^{\prime}}$ as a product $A B^{-1}$ where:
$-B$ sends the standard basis to $v_{1}, \cdots, v_{n}, v_{n+1}, \cdots, v_{k}$ with $v_{1}, \cdots, v_{n}$ an orthonormal basis for $\ell^{\prime}$ and $v_{n+1}, \cdots, v_{k}$ a fixed basis for $\ell^{\perp}$.
$-A$ sends the standard basis to $\pi_{\ell}\left(v_{1}\right), \cdots, \pi_{\ell}\left(v_{n}\right), v_{n+1}, \cdots, v_{k}$.
Both $A$ and $B$ depend continuously on $v_{1}, \cdots, v_{n}$. Since matrix multiplication and matrix inversion are continuous operations (think of the 'classical adjoint' formula for the inverse of a matrix), it follows that the product $L_{\ell^{\prime}}=A B^{-1}$ depends continuously on $v_{1}, \cdots, v_{n}$. But since $L_{\ell^{\prime}}$ depends only on $\ell^{\prime}$, not on the basis $v_{1}, \cdots, v_{n}$ for $\ell^{\prime}$, it follows that $L_{\ell^{\prime}}$ depends continuously on $\ell^{\prime}$ since $G_{n}\left(\mathbb{R}^{k}\right)$ has the quotient topology from $V_{n}\left(\mathbb{R}^{k}\right)$. Since we have $h\left(\ell^{\prime}, v\right)=\left(\ell^{\prime}, \pi_{\ell}(v)\right)=\left(\ell^{\prime}, L_{\ell^{\prime}}(v)\right)$, we see that $h$ is continuous. Similarly, $h^{-1}\left(\ell^{\prime}, w\right)=\left(\ell^{\prime}, L_{\ell^{\prime}}^{-1}(w)\right)$ and $L_{\ell^{\prime}}^{-1}$ depends continuously on $\ell^{\prime}$, matrix inversion being continuous, so $h^{-1}$ is continuous.

This finishes the proof for finite $k$. When $k=\infty$ one takes $U_{\ell}$ to be the union of the $U_{\ell}$ 's for increasing $k$. The local trivializations $h$ constructed above for finite $k$
then fit together to give a local trivialization over this $U_{\ell}$, continuity being automatic since we use the weak topology.

Let $[X, Y]$ denote the set of homotopy classes of maps $f: X \rightarrow Y$.
Theorem 1.8. For paracompact $X$, the map $\left[X, G_{n}\right] \rightarrow \operatorname{Vect}^{n}(X),[f] \mapsto f^{*}\left(E_{n}\right)$, is | a bijection.

Thus, vector bundles over a fixed base space are classified by homotopy classes of maps into $G_{n}$. Because of this, $G_{n}$ is called the classifying space for $n$-dimensional vector bundles and $E_{n} \rightarrow G_{n}$ is called the universal bundle.

As an example of how a vector bundle could be isomorphic to a pullback $f^{*}\left(E_{n}\right)$, consider the tangent bundle to $S^{n}$. This is the vector bundle $p: E \rightarrow S^{n}$ where $E=$ $\left\{(x, v) \in S^{n} \times \mathbb{R}^{n+1} \mid x \perp v\right\}$. Each fiber $p^{-1}(x)$ is a point in $G_{n}\left(\mathbb{R}^{n+1}\right)$, so we have a map $S^{n} \rightarrow G_{n}\left(\mathbb{R}^{n+1}\right), x \mapsto p^{-1}(x)$. Via the inclusion $\mathbb{R}^{n+1} \hookrightarrow \mathbb{R}^{\infty}$ we can view this as a map $f: S^{n} \rightarrow G_{n}\left(\mathbb{R}^{\infty}\right)=G_{n}$, and $E$ is exactly the pullback $f^{*}\left(E_{n}\right)$.

Proof of 1.8: The key observation is the following: For an $n$-dimensional vector bundle $p: E \rightarrow X$, an isomorphism $E \approx f^{*}\left(E_{n}\right)$ is equivalent to a map $g: E \rightarrow \mathbb{R}^{\infty}$ that is a linear injection on each fiber. To see this, suppose first that we have a map $f: X \rightarrow G_{n}$ and an isomorphism $E \approx f^{*}\left(E_{n}\right)$. Then we have a commutative diagram

where $\pi(\ell, v)=v$. The composition across the top row is a map $g: E \rightarrow \mathbb{R}^{\infty}$ that is a linear injection on each fiber, since both $\tilde{f}$ and $\pi$ have this property. Conversely, given a map $g: E \rightarrow \mathbb{R}^{\infty}$ that is a linear injection on each fiber, define $f: X \rightarrow G_{n}$ by letting $f(x)$ be the $n$-plane $g\left(p^{-1}(x)\right)$. This clearly yields a commutative diagram as above.

To show surjectivity of the map $\left[X, G_{n}\right] \rightarrow \operatorname{Vect}^{n}(X)$, suppose $p: E \rightarrow X$ is an $n$-dimensional vector bundle. Let $\left\{U_{\alpha}\right\}$ be an open cover of $X$ such that $E$ is trivial over each $U_{\alpha}$. By Lemma 1.19 in the Appendix to this chapter there is a countable open cover $\left\{U_{i}\right\}$ of $X$ such that $E$ is trivial over each $U_{i}$, and there is a partition of unity $\left\{\varphi_{i}\right\}$ with $\varphi_{i}$ supported in $U_{i}$. Let $g_{i}: p^{-1}\left(U_{i}\right) \rightarrow \mathbb{R}^{n}$ be the composition of a trivialization $p^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{R}^{n}$ with projection onto $\mathbb{R}^{n}$. The map $\left(\varphi_{i} p\right) g_{i}$, $v \mapsto \varphi_{i}(p(v)) g_{i}(v)$, extends to a map $E \rightarrow \mathbb{R}^{n}$ that is zero outside $p^{-1}\left(U_{i}\right)$. Near each point of $X$ only finitely many $\varphi_{i}$ 's are nonzero, and at least one $\varphi_{i}$ is nonzero, so these extended $\left(\varphi_{i} p\right) g_{i}$ 's are the coordinates of a map $g: E \rightarrow\left(\mathbb{R}^{n}\right)^{\infty}=\mathbb{R}^{\infty}$ that is a linear injection on each fiber.

For injectivity, if we have isomorphisms $E \approx f_{0}^{*}\left(E_{n}\right)$ and $E \approx f_{1}^{*}\left(E_{n}\right)$ for two maps $f_{0}, f_{1}: X \rightarrow G_{n}$, then these give maps $g_{0}, g_{1}: E \rightarrow \mathbb{R}^{\infty}$ that are linear injections
on fibers, as in the first paragraph of the proof. We claim $g_{0}$ and $g_{1}$ are homotopic through maps $g_{t}$ that are linear injections on fibers. If this is so, then $f_{0}$ and $f_{1}$ will be homotopic via $f_{t}(x)=g_{t}\left(p^{-1}(x)\right)$.

The first step in constructing a homotopy $g_{t}$ is to compose $g_{0}$ with the homotopy $L_{t}: \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ defined by $L_{t}\left(x_{1}, x_{2}, \cdots\right)=(1-t)\left(x_{1}, x_{2}, \cdots\right)+t\left(x_{1}, 0, x_{2}, 0, \cdots\right)$. For each $t$ this is a linear map whose kernel is easily computed to be 0 , so $L_{t}$ is injective. Composing the homotopy $L_{t}$ with $g_{0}$ moves the image of $g_{0}$ into the odd-numbered coordinates. Similarly we can homotope $g_{1}$ into the even-numbered coordinates. Still calling the new $g$ 's $g_{0}$ and $g_{1}$, let $g_{t}=(1-t) g_{0}+t g_{1}$. This is linear and injective on fibers for each $t$ since $g_{0}$ and $g_{1}$ are linear and injective on fibers.

Usually $\left[X, G_{n}\right.$ ] is too difficult to compute explicitly, so this theorem is of limited use as a tool for explicitly classifying vector bundles over a given base space. Its importance is due more to its theoretical implications. Among other things, it can reduce the proof of a general statement to the special case of the universal bundle. For example, it is easy to deduce that vector bundles over a paracompact base have inner products, since the bundle $E_{n} \rightarrow G_{n}$ has an obvious inner product obtained by restricting the standard inner product in $\mathbb{R}^{\infty}$ to each $n$-plane, and this inner product on $E_{n}$ induces an inner product on every pullback $f^{*}\left(E_{n}\right)$.

The proof of the following result provides another illustration of this principle of the 'universal example:'

Proposition 1.9. For each vector bundle $E \rightarrow X$ with $X$ compact Hausdorff there $\|$ exists a vector bundle $E^{\prime} \rightarrow X$ such that $E \oplus E^{\prime}$ is the trivial bundle.

This can fail when $X$ is noncompact. An example is the canonical line bundle over $\mathbb{R} \mathrm{P}^{\infty}$, as we shall see in Example 3.6. There are some noncompact spaces for which the proposition remains valid, however. Among these are all infinite but finitedimensional CW complexes, according to an exercise at the end of the chapter.

Proof: First we show this holds for $E_{n}\left(\mathbb{R}^{k}\right)$. In this case the bundle with the desired property will be $E_{n}^{\perp}\left(\mathbb{R}^{k}\right)=\left\{(\ell, v) \in G_{n}\left(\mathbb{R}^{k}\right) \times \mathbb{R}^{k} \mid v \perp \ell\right\}$. This is because $E_{n}\left(\mathbb{R}^{k}\right)$ is by its definition a subbundle of the product bundle $G_{n}\left(\mathbb{R}^{k}\right) \times \mathbb{R}^{k}$, and the construction of a complementary orthogonal subbundle given in the proof of Proposition 1.6 yields exactly $E_{n}^{\perp}\left(\mathbb{R}^{k}\right)$.

Now for the general case. Let $f: X \rightarrow G_{n}$ pull the universal bundle $E_{n}$ back to the given bundle $E \rightarrow X$. The space $G_{n}$ is the union of the subspaces $G_{n}\left(\mathbb{R}^{k}\right)$ for $k \geq 1$, with the weak topology, so the following lemma implies that the compact set $f(X)$ must lie in $G_{n}\left(\mathbb{R}^{k}\right)$ for some $k$. Then $f$ pulls the trivial bundle $E_{n}\left(\mathbb{R}^{k}\right) \oplus E_{n}^{\perp}\left(\mathbb{R}^{k}\right)$ back to $E \oplus f^{*}\left(E_{n}^{\perp}\left(\mathbb{R}^{k}\right)\right)$, which is therefore also trivial.

Lemma 1.10. If $X$ is the union of a sequence of subspaces $X_{1} \subset X_{2} \subset \cdots$ with the weak topology, and points are closed subspaces in each $X_{i}$, then for each compact set $C \subset X$ there is an $X_{i}$ that contains $C$.

Proof: If the conclusion is false, then for each $i$ there is a point $x_{i} \in C$ not in $X_{i}$. Let $S=\left\{x_{1}, x_{2}, \cdots\right\}$, an infinite set. However, $S \cap X_{i}$ is finite for each $i$, hence closed in $X_{i}$. Since $X$ has the weak topology, $S$ is closed in $X$. By the same reasoning, every subset of $S$ is closed, so $S$ has the discrete topology. Since $S$ is a closed subspace of the compact space $C$, it is compact. Hence $S$ must be finite, a contradiction.

The constructions and results in this subsection hold equally well for vector bundles over $\mathbb{C}$, with $G_{n}\left(\mathbb{C}^{k}\right)$ the space of $n$-dimensional $\mathbb{C}$-linear subspaces of $\mathbb{C}^{k}$, etc. In particular, the proof of Theorem 1.8 translates directly to complex vector bundles, showing that $\operatorname{Vect}_{\mathbb{C}}^{n}(X) \approx\left[X, G_{n}\left(\mathbb{C}^{\infty}\right)\right]$.

## Vector Bundles over Spheres

Vector bundles with base space a sphere can be described more explicitly, and this will allow us to compute Vect ${ }^{n}\left(S^{k}\right)$ for small values of $k$.

First let us describe a way to construct vector bundles $E \rightarrow S^{k}$. Write $S^{k}$ as the union of its upper and lower hemispheres $D_{+}^{k}$ and $D_{-}^{k}$, with $D_{+}^{k} \cap D_{-}^{k}=S^{k-1}$. Given a map $f: S^{k-1} \rightarrow G L_{n}(\mathbb{R})$, let $E_{f}$ be the quotient of the disjoint union $D_{+}^{k} \times \mathbb{R}^{n} \amalg D_{-}^{k} \times \mathbb{R}^{n}$ obtained by identifying $(x, v) \in \partial D_{+}^{k} \times \mathbb{R}^{n}$ with $(x, f(x)(v)) \in \partial D_{-}^{k} \times \mathbb{R}^{n}$. There is then a natural projection $E_{f} \rightarrow S^{k}$ and we will leave to the reader the easy verification that this is an $n$-dimensional vector bundle. The map $f$ is called its clutching function. (Presumably the terminology comes from the clutch which engages and disengages gears in machinery.) The same construction works equally well with $\mathbb{C}$ in place of $\mathbb{R}$, so from a map $f: S^{k-1} \rightarrow G L_{n}(\mathbb{C})$ one obtains a complex vector bundle $E_{f} \rightarrow S^{k}$.
Example 1.11. Let us see how the tangent bundle $T S^{2}$ to $S^{2}$ can be described in these terms. Define two orthogonal vector fields $v_{+}$and $w_{+}$on the northern hemisphere $D_{+}^{2}$ of $S^{2}$ in the following way. Start with a standard pair of orthogonal vectors at each point of a flat disk $D^{2}$ as in the left-hand figure below, then stretch the disk over the northern hemisphere of $S^{2}$, carrying the vectors along as tangent vectors to the resulting curved disk. As we travel around the equator of $S^{2}$ the vectors $v_{+}$and $w_{+}$ then rotate through an angle of $2 \pi$ relative to the equatorial direction, as in the right half of the figure.


Reflecting everything across the equatorial plane, we obtain orthogonal vector fields $v_{-}$and $w_{-}$on the southern hemisphere $D_{-}^{2}$. The restrictions of $v_{-}$and $w_{-}$to the equator also rotate through an angle of $2 \pi$, but in the opposite direction from $v_{+}$ and $w_{+}$since we have reflected across the equator. The pair ( $v_{ \pm}, w_{ \pm}$) defines a trivialization of $T S^{2}$ over $D_{ \pm}^{2}$ taking $\left(v_{ \pm}, w_{ \pm}\right)$to the standard basis for $\mathbb{R}^{2}$. Over the equator $S^{1}$ we then have two trivializations, and the function $f: S^{1} \rightarrow G L_{2}(\mathbb{R})$ which rotates $\left(v_{+}, w_{+}\right)$to $\left(v_{-}, w_{-}\right)$sends $\theta \in S^{1}$, regarded as an angle, to rotation through the angle $2 \theta$. For this map $f$ we then have $E_{f}=T S^{2}$.

Example 1.12. Let us find a clutching function for the canonical complex line bundle over $\mathbb{C} \mathrm{P}^{1}=S^{2}$. (This example will play a crucial role in the next chapter.) The space $\mathbb{C} \mathrm{P}^{1}$ is the quotient of $\mathbb{C}^{2}-\{0\}$ under the equivalence relation $\left(z_{0}, z_{1}\right) \sim \lambda\left(z_{0}, z_{1}\right)$. Denote the equivalence class of $\left(z_{0}, z_{1}\right)$ by $\left[z_{0}, z_{1}\right]$. We can also write points of $\mathbb{C}{ }^{1}$ as ratios $z=z_{1} / z_{0} \in \mathbb{C} \cup\{\infty\}=S^{2}$. Points in the disk $D_{-}^{2}$ inside the unit circle $S^{1} \subset \mathbb{C}$ can be expressed uniquely in the form $\left[1, z_{1} / z_{0}\right]=[1, z]$ with $|z| \leq 1$, and points in the disk $D_{+}^{2}$ outside $S^{1}$ can be written uniquely in the form $\left[z_{0} / z_{1}, 1\right]=$ [ $\left.z^{-1}, 1\right]$ with $\left|z^{-1}\right| \leq 1$. Over $D_{-}^{2}$ a section of the canonical line bundle is then given by $\left[1, z_{1} / z_{0}\right] \mapsto\left(1, z_{1} / z_{0}\right)$ and over $D_{+}^{2}$ a section is $\left[z_{0} / z_{1}, 1\right] \mapsto\left(z_{0} / z_{1}, 1\right)$. These sections determine trivializations of the canonical line bundle over these two disks, and over their common boundary $S^{1}$ we pass from the $D_{+}^{2}$ trivialization to the $D_{-}^{2}$ trivialization by multiplying by $z=z_{1} / z_{0}$. Thus the canonical line bundle is $E_{f}$ for the clutching function $f: S^{1} \rightarrow G L_{1}(\mathbb{C})$ defined by $f(z)=(z)$.

A basic property of the construction of bundles $E_{f} \rightarrow S^{k}$ via clutching functions is that $E_{f} \approx E_{g}$ if $f \simeq g$. For if $F: S^{k-1} \times I \rightarrow G L_{n}(\mathbb{R})$ is a homotopy from $f$ to $g$, then we can construct by the same method a vector bundle $E_{F} \rightarrow S^{k} \times I$ restricting to $E_{f}$ over $S^{k} \times\{0\}$ and $E_{g}$ over $S^{k} \times\{1\}$. Hence $E_{f}$ and $E_{g}$ are isomorphic by Proposition 1.3. Thus the association $f \mapsto E_{f}$ gives a well-defined map $\Phi: \pi_{k-1} G L_{n}(\mathbb{R}) \longrightarrow \operatorname{Vect}^{n}\left(S^{k}\right)$. If we change coordinates in $\mathbb{R}^{n}$ via a fixed $\alpha \in G L_{n}(\mathbb{R})$ we obtain an isomorphic bundle $E_{\alpha^{-1} f \alpha}$. Hence $\Phi$ induces a well-defined map on the set of orbits in $\pi_{k-1} G L_{n}(\mathbb{R})$ under the conjugation action of $G L_{n}(\mathbb{R})$, or what amounts to the same thing, the conjugation action of $\pi_{0} G L_{n}(\mathbb{R})$. Since $\pi_{0} G L_{n}(\mathbb{R}) \approx \mathbb{Z}_{2}$ as we shall see below, we may write this set of orbits as $\pi_{k-1} G L_{n}(\mathbb{R}) / \mathbb{Z}_{2}$.
$\|$ Proposition 1.13. The map $\Phi: \pi_{k-1} G L_{n}(\mathbb{R}) / \mathbb{Z}_{2} \rightarrow \operatorname{Vect}^{n}\left(S^{k}\right)$ is a bijection.
Proof: An inverse mapping $\Psi$ can be constructed as follows. Given an $n$-dimensional vector bundle $p: E \rightarrow S^{k}$, its restrictions $E_{+}$and $E_{-}$over $D_{+}^{k}$ and $D_{-}^{k}$ are trivial since $D_{+}^{k}$ and $D_{-}^{k}$ are contractible. Choose trivializations $h_{ \pm}: E_{ \pm} \rightarrow D_{ \pm}^{k} \times \mathbb{R}^{n}$. Selecting a basepoint $s_{0} \in S^{k-1}$ and fixing an isomorphism $p^{-1}\left(s_{0}\right) \approx \mathbb{R}^{n}$, we may assume $h_{+}$ and $h_{-}$are normalized to agree with this isomorphism on $p^{-1}\left(s_{0}\right)$. Then $h_{-} h_{+}^{-1}$ defines a map $\left(S^{k-1}, s_{0}\right) \rightarrow\left(G L_{n}(\mathbb{R}), \mathbb{1}\right)$, whose homotopy class is by definition $\Psi(E) \in$
$\pi_{k-1} G L_{n}(\mathbb{R})$. To see that $\Psi(E)$ is well-defined in the orbit set $\pi_{k-1} G L_{n}(\mathbb{R}) / \mathbb{Z}_{2}$, note first that any two choices of normalized $h_{ \pm}$differ by a map $\left(D_{ \pm}^{k}, s_{0}\right) \rightarrow\left(G L_{n}(\mathbb{R}), \mathbb{1}\right)$. Since $D_{ \pm}^{k}$ is contractible, such a map is homotopic to the constant map, so the two choices of $h_{ \pm}$are homotopic, staying fixed over $s_{0}$. Rechoosing the identification $p^{-1}\left(s_{0}\right) \approx \mathbb{R}^{n}$ has the effect of conjugating $\Psi(E)$ by an element of $G L_{n}(\mathbb{R})$, so $\Psi: \operatorname{Vect}^{n}\left(S^{k}\right) \rightarrow \pi_{k-1} G L_{n}(\mathbb{R}) / \mathbb{Z}_{2}$ is well-defined.

It is clear that $\Psi$ and $\Phi$ are inverses of each other.

The case of complex vector bundles is similar but simpler since $\pi_{0} G L_{n}(\mathbb{C})=0$, and so we obtain bijections $\operatorname{Vect}_{\mathbb{C}}^{n}\left(S^{k}\right) \approx \pi_{k-1} G L_{n}(\mathbb{C})$.

The same proof shows more generally that for a suspension $S X$ with $X$ paracompact, $\operatorname{Vect}^{n}(S X) \approx\left\langle X, G L_{n}(\mathbb{R})\right\rangle / \mathbb{Z}_{2}$, where $\left\langle X, G L_{n}(\mathbb{R})\right\rangle$ denotes the basepointpreserving homotopy classes of maps $X \rightarrow G L_{n}(\mathbb{R})$. In the complex case we have $\operatorname{Vect}_{\mathbb{C}}^{n}(S X) \approx\left\langle X, G L_{n}(\mathbb{C})\right\rangle$.

It is possible to compute a few homotopy groups of $G L_{n}(\mathbb{R})$ and $G L_{n}(\mathbb{C})$ by elementary means. The first observation is that $G L_{n}(\mathbb{R})$ deformation retracts onto the subgroup $O(n)$ consisting of orthogonal matrices, the matrices whose columns form an orthonormal basis for $\mathbb{R}^{n}$, or equivalently the matrices of isometries of $\mathbb{R}^{n}$ which fix the origin. The Gram-Schmidt process for converting a basis into an orthonormal basis provides a retraction of $G L_{n}(\mathbb{R})$ onto $O(n)$, continuity being evident from the explicit formulas for the Gram-Schmidt process. Each step of the process is in fact realizable by a homotopy, by inserting appropriate scalar factors into the formulas, and this yields a deformation retraction of $G L_{n}(\mathbb{R})$ onto $O(n)$. (Alternatively, one can use the so-called polar decomposition of matrices to show that $G L_{n}(\mathbb{R})$ is in fact homeomorphic to the product of $O(n)$ with a Euclidean space.) The same reasoning shows that $G L_{n}(\mathbb{C})$ deformation retracts onto the unitary subgroup $U(n)$, consisting of matrices whose columns form an orthonormal basis for $\mathbb{C}^{n}$ with respect to the standard hermitian inner product. These are the isometries in $G L_{n}(\mathbb{C})$.

Next, there are fiber bundles

$$
O(n-1) \rightarrow O(n) \xrightarrow{p} S^{n-1} \quad U(n-1) \rightarrow U(n) \xrightarrow{p} S^{2 n-1}
$$

where $p$ is the map obtained by evaluating an isometry at a chosen unit vector, for example $(1,0, \cdots, 0)$. Local triviality for the first bundle can be shown as follows. We can view $O(n)$ as the Stiefel manifold $V_{n}\left(\mathbb{R}^{n}\right)$ by regarding the columns of an orthogonal matrix as an orthonormal $n$-frame. In these terms, the map $p$ projects an $n$-frame onto its first vector. Given a vector $v_{1} \in S^{n-1}$, extend this to an orthonormal $n$-frame $v_{1}, \cdots, v_{n}$. For unit vectors $v$ near $v_{1}$, applying Gram-Schmidt to $v, v_{2}, \cdots, v_{n}$ produces a continuous family of orthonormal $n$-frames with first vector $v$. The last $n-1$ vectors of these frames form orthonormal bases for $v^{\perp}$ varying continuously with $v$. Each such basis gives an identification of $v^{\perp}$ with $\mathbb{R}^{n-1}$, hence
$p^{-1}(v)$ is identified with $V_{n-1}\left(\mathbb{R}^{n-1}\right)=O(n-1)$, and this gives the desired local trivialization. The same argument works in the unitary case.

From the long exact sequences of homotopy groups for these bundles we deduce immediately:

Proposition 1.14. The map $\pi_{i} O(n) \rightarrow \pi_{i} O(n+1)$ induced by the inclusion of $O(n)$ into $O(n+1)$ is an isomorphism for $i<n-1$ and a surjection for $i=n-1$. Similarly, the inclusion $U(n) \hookrightarrow U(n+1)$ induces an isomorphism on $\pi_{i}$ for $i<2 n$ and a surjection for $i=2 n$.

Here are tables of some low-dimensional calculations:


Proposition 1.14 says that along each row in the first table the groups stabilize once we pass the diagonal term $\pi_{n} O(n+1)$, and in the second table the rows stabilize even sooner. The stable groups are given by the famous Bott Periodicity Theorem which we prove in Chapter 2 in the complex case and Chapter 4 in the real case:

$$
\begin{array}{c|cccccccc}
i \bmod 8 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \pi_{i} O(n) & \mathbb{Z}_{2} & \mathbb{Z}_{2} & 0 & \mathbb{Z} & 0 & 0 & 0 & \mathbb{Z} \\
\pi_{i} U(n) & 0 & \mathbb{Z} & 0 & \mathbb{Z} & 0 & \mathbb{Z} & 0 & \mathbb{Z}
\end{array}
$$

The calculations in the first two tables can be obtained from the following homeomorphisms, together with the fact that the universal cover of $\mathbb{R} \mathrm{P}^{3}$ is $S^{3}$ :

$$
\begin{array}{ll}
O(n) \approx S^{0} \times S O(n) & U(n) \approx S^{1} \times S U(n) \\
S O(1)=\{1\} & S U(1)=\{1\} \\
S O(2) \approx S^{1} & S U(2) \approx S^{3} \\
S O(3) \approx \mathbb{R} \mathrm{P}^{3} & \\
S O(4) \approx \mathbb{R} \mathrm{P}^{3} \times S^{3} &
\end{array}
$$

Here $S O(n)$ and $S U(n)$ are the subgroups consisting of matrices of determinant 1 . A homeomorphism $O(n) \rightarrow S^{0} \times S O(n)$ can be defined by $\alpha \mapsto\left(\operatorname{det}(\alpha), \alpha^{\prime}\right)$ where $\alpha^{\prime}$ is obtained from $\alpha$ by multiplying its last column by the scalar $1 / \operatorname{det}(\alpha)$. The inverse homeomorphism sends $(\lambda, \alpha) \in S^{0} \times S O(n)$ to the matrix obtained by multiplying the last column of $\alpha$ by $\lambda$. The same formulas in the complex case give a homeomorphism $U(n) \approx S^{1} \times S U(n)$.

It is obvious that $S O(1)$ and $S U(1)$ are trivial. For the homeomorphisms $S O(2) \approx$ $S^{1}$ and $S U(2) \approx S^{3}$, note that $2 \times 2$ orthogonal or unitary matrices of determinant 1 are determined by their first column, which can be any unit vector in $\mathbb{R}^{2}$ or $\mathbb{C}^{2}$.

A homeomorphism $S O(3) \approx \mathbb{R} \mathrm{P}^{3}$ can be obtained in the following way. Let $\varphi: D^{3} \rightarrow S O(3)$ send a nonzero vector $x \in D^{3}$ to the rotation through angle $|x| \pi$ about the line determined by $x$. An orientation convention, such as the 'right-hand rule,' is needed to make this unambiguous. By continuity, $\varphi$ must send 0 to the identity. Antipodal points of $S^{2}=\partial D^{3}$ are sent to the same rotation through angle $\pi$, so $\varphi$ induces a map $\bar{\varphi}: \mathbb{R} \mathrm{P}^{3} \rightarrow S O(3)$, where $\mathbb{R} \mathrm{P}^{3}$ is viewed as $D^{3}$ with antipodal boundary points identified. The map $\bar{\Phi}$ is clearly injective since the axis of a nontrivial rotation is uniquely determined as its fixed point set, and $\bar{\Phi}$ is surjective since by easy linear algebra each nonidentity element of $S O(3)$ is a rotation about a unique axis. It follows that $\bar{\varphi}$ is a homeomorphism $\mathbb{R P}^{3} \approx S O(3)$.

It remains to show that $S O(4)$ is homeomorphic to $S^{3} \times S O$ (3). Identifying $\mathbb{R}^{4}$ with the quaternions $\mathbb{H}$ and $S^{3}$ with the group of unit quaternions, the quaternion multiplication $w \mapsto v w$ for fixed $v \in S^{3}$ defines an isometry $\rho_{v} \in O(4)$ since quaternionic multiplication satisfies $|v w|=|v||w|$ and we are taking $v$ to be a unit vector. Points of $O(4)$ can be viewed as 4-tuples $\left(v_{1}, \cdots, v_{4}\right)$ of orthonormal vectors $v_{i} \in \mathbb{H}=\mathbb{R}^{4}$, and $O(3)$ can be viewed as the subspace with $v_{1}=1$. Define a map $S^{3} \times O(3) \rightarrow O(4)$ by sending $\left(v,\left(1, v_{2}, v_{3}, v_{4}\right)\right)$ to $\left(v, v v_{2}, v v_{3}, v v_{4}\right)$, the result of applying $\rho_{v}$ to the orthonormal frame $\left(1, v_{2}, v_{3}, v_{4}\right)$. This map is a homeomorphism since it has an inverse defined by $\left(v, v_{2}, v_{3}, v_{4}\right) \mapsto\left(v,\left(1, v^{-1} v_{2}, v^{-1} v_{3}, v^{-1} v_{4}\right)\right)$, the second coordinate being the orthonormal frame obtained by applying $\rho_{v^{-1}}$ to the frame ( $v, v_{2}, v_{3}, v_{4}$ ). Since the path-components of $S^{3} \times O$ (3) and $O(4)$ are homeomorphic to $S^{3} \times S O$ (3) and $S O(4)$ respectively, it follows that these path-components are homeomorphic.

The conjugation action of $\pi_{0} O(n) \approx \mathbb{Z}_{2}$ on $\pi_{i} O(n)$ which appears in the bijection $\operatorname{Vect}^{n}\left(S^{i+1}\right) \approx \pi_{i} O(n) / \mathbb{Z}_{2}$ is trivial in the stable range $i<n-1$ since we can realize each element of $\pi_{i} O(n)$ by a map $S^{i} \rightarrow O(i+1)$ and then act on this by conjugating by a reflection across a hyperplane containing $\mathbb{R}^{i+1}$. Note that the map $\operatorname{Vect}^{n}\left(S^{i+1}\right) \rightarrow \operatorname{Vect}^{n+1}\left(S^{i+1}\right)$ corresponding to the map $\pi_{i} O(n) \rightarrow \pi_{i} O(n+1)$ induced by the inclusion $O(n) \hookrightarrow O(n+1)$ is just direct sum with the trivial line bundle. Thus the stable isomorphism classes of vector bundles over spheres form groups, the same groups appearing in Bott Periodicity. This is the beginning of K-theory, as we shall see in the next chapter.

Outside the stable range the conjugation action is not always trivial. For example, in $\pi_{1} O(2) \approx \mathbb{Z}$ the action is given by the nontrivial automorphism of $\mathbb{Z}$, multiplication by -1 , since conjugating a rotation of $\mathbb{R}^{2}$ by a reflection produces a rotation in the opposite direction. Thus 2-dimensional vector bundles over $S^{2}$ are classified by non-negative integers. When we stabilize by taking direct sum with a line bundle, then we are in the stable range where $\pi_{1} O(n) \approx \mathbb{Z}_{2}$, so the 2 -dimensional bundles corresponding to even integers are the ones which are stably trivial. The tangent bundle
$T\left(S^{2}\right)$ is stably trivial, hence corresponds to an even integer, in fact to 2 as we saw in Example 2.11.

Another case in which the conjugation action on $\pi_{i} O(n)$ is trivial is when $n$ is odd since in this case we can choose the conjugating element to be the orientationreversing isometry $x \mapsto-x$, which commutes with every linear map.

The two identifications of $\operatorname{Vect}^{n}\left(S^{k}\right)$ with $\left[S^{k}, G_{n}\left(\mathbb{R}^{\infty}\right)\right]$ and $\pi_{k-1} O(n) / \mathbb{Z}_{2}$ are related in the following way. First, there is a fiber bundle $O(n) \rightarrow V_{n}\left(\mathbb{R}^{\infty}\right) \rightarrow G_{n}\left(\mathbb{R}^{\infty}\right)$ where the $\operatorname{map} V_{n} \rightarrow G_{n}$ projects an $n$-frame onto the $n$-plane it spans. Local triviality follows from local triviality of the universal bundle $E_{n} \rightarrow G_{n}$ since $V_{n}$ can be viewed as the bundle of $n$-frames in fibers of $E_{n}$. The space $V_{n}\left(\mathbb{R}^{\infty}\right)$ is contractible. This can be seen by using the embeddings $L_{t}: \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ defined in the proof of Theorem 1.8 to deform an arbitrary $n$-frame into the odd-numbered coordinates of $\mathbb{R}^{\infty}$, then taking the standard linear deformation to a fixed $n$-frame in the even coordinates; these deformations may produce nonorthonormal $n$-frames, but orthonormality can always be restored by the Gram-Schmidt process. Since the homotopy groups of the total space of the fiber bundle $O(n) \rightarrow V_{n}\left(\mathbb{R}^{\infty}\right) \rightarrow G_{n}\left(\mathbb{R}^{\infty}\right)$ are trivial, we get isomorphisms $\pi_{k} G_{n}\left(\mathbb{R}^{\infty}\right) \approx \pi_{k-1} O(n)$. By Proposition 4A. 1 of [AT], $\left[S^{k}, G_{n}\left(\mathbb{R}^{\infty}\right)\right]$ is $\pi_{k} G_{n}\left(\mathbb{R}^{\infty}\right)$ modulo the action of $\pi_{1} G_{n}\left(\mathbb{R}^{\infty}\right)$. Thus $\operatorname{Vect}^{n}\left(S^{k}\right)$ is equal to both $\pi_{k} G_{n}\left(\mathbb{R}^{\infty}\right)$ modulo the action of $\pi_{1} G_{n}\left(\mathbb{R}^{\infty}\right)$ and $\pi_{k-1} O(n)$ modulo the action of $\pi_{0} O(n)$. One can check that under the isomorphisms $\pi_{k} G_{n}\left(\mathbb{R}^{\infty}\right) \approx \pi_{k-1} O(n)$ and $\pi_{0} O(n) \approx \pi_{1} G_{n}\left(\mathbb{R}^{\infty}\right)$ the actions correspond, so the two descriptions of $\operatorname{Vect}^{n}\left(S^{k}\right)$ are equivalent.

## Orientable Vector Bundles

An orientation of $\mathbb{R}^{n}$ is an equivalence class of ordered bases, two ordered bases being equivalent if the linear isomorphism taking one to the other has positive determinant. An orientation of an $n$-dimensional vector bundle is a choice of orientation in each fiber which is locally constant, in the sense that it is defined in a neighborhood of any fiber by $n$ independent local sections.

Let $\operatorname{Vect}_{+}^{n}(B)$ be the set of orientation-preserving isomorphism classes of oriented $n$-dimensional vector bundles over $B$. The proof of Theorem 1.8 extends without difficulty to show that $\operatorname{Vect}_{+}^{n}(B) \approx\left[B, \widetilde{G}_{n}\right]$ where $\widetilde{G}_{n}$ is the space of oriented $n$-planes in $\mathbb{R}^{\infty}$. This is the orbit space of $V_{n}\left(\mathbb{R}^{\infty}\right.$ under the action of $S O(n)$, just as $G_{n}$ is the orbit space under the action of $O(n)$. The universal oriented bundle $\widetilde{E}_{n}$ over $\widetilde{G}_{n}$ consists of pairs $(\ell, v) \in \widetilde{G}_{n} \times \mathbb{R}^{\infty}$ with $v \in \ell$. In other words, $\widetilde{E}_{n} \rightarrow \widetilde{G}_{n}$ is the pullback of $E_{n} \rightarrow G_{n}$ via the natural projection $\tilde{G}_{n} \rightarrow G_{n}$. It is easy to see that this projection is a 2 -sheeted covering space, and an $n$-dimensional vector bundle $E \rightarrow B$ is orientable iff its classifying map $f: B \rightarrow G_{n}$ with $f^{*}\left(E_{n}\right) \approx E$ lifts to a map $\tilde{f}: B \rightarrow \widetilde{G}_{n}$. In fact, each lift $\tilde{f}$ corresponds to an orientation of $E$. The space $\tilde{G}_{n}$ is path-connected, since $G_{n}$ is connected and two points of $\widetilde{G}_{n}$ having the same image in $G_{n}$ are oppositely oriented $n$-planes which can be joined by a path in $\tilde{G}_{n}$ rotating the $n$-plane 180 degrees in an
ambient $(n+1)$-plane, reversing its orientation. Since $\pi_{1}\left(G_{n}\right) \approx \pi_{0} O(n) \approx \mathbb{Z}_{2}$, this implies that $\tilde{G}_{n}$ is the universal cover of $G_{n}$.

The oriented version of Proposition 1.13 is a bijection $\pi_{k-1} S O(n) \approx \operatorname{Vect}_{+}^{n}\left(S^{k}\right)$, proved in the same way. Since $\pi_{0} S O(n)=0$, there is no action to factor out.

Complex vector bundles are always orientable, when regarded as real vector bundles by restricting the scalar multiplication to $\mathbb{R}$. For if $v_{1}, \cdots, v_{n}$ is a basis for $\mathbb{C}^{n}$ then the basis $v_{1}, i v_{1}, \cdots, v_{n}, i v_{n}$ for $\mathbb{C}^{n}$ as an $\mathbb{R}$-vector space determines an orientation of $\mathbb{C}^{n}$ which is independent of the choice of $\mathbb{C}$-basis $v_{1}, \cdots, v_{n}$ since any other $\mathbb{C}$-basis can be joined to this one by a continuous path of $\mathbb{C}$-bases, the group $G L_{n}(\mathbb{C})$ being path-connected.

## A Cell Structure on Grassmann Manifolds

Since Grassmann manifolds play such a fundamental role in vector bundle theory, it would be good to have a better grasp on their topology. Here we show that $G_{n}\left(\mathbb{R}^{\infty}\right)$ has the structure of a CW complex with each $G_{n}\left(\mathbb{R}^{k}\right)$ a finite subcomplex. We will also see that $G_{n}\left(\mathbb{R}^{k}\right)$ is a closed manifold of dimension $n(k-n)$. Similar statements hold in the complex case as well.

For a start let us show that $G_{n}\left(\mathbb{R}^{k}\right)$ is Hausdorff, since we will need this fact later when we construct the CW structure. Given two $n$-planes $\ell$ and $\ell^{\prime}$ in $G_{n}\left(\mathbb{R}^{k}\right)$, it suffices to find a continuous $f: G_{n}\left(\mathbb{R}^{k}\right) \rightarrow \mathbb{R}$ taking different values on $\ell$ and $\ell^{\prime}$. For a vector $v \in \mathbb{R}^{k}$ let $f_{v}(\ell)$ be the length of the orthogonal projection of $v$ onto $\ell$. This is a continuous function of $\ell$ since if we choose an orthonormal basis $v_{1}, \cdots, v_{n}$ for $\ell$ then $f_{v}(\ell)=\left(\left(v \cdot v_{1}\right)^{2}+\cdots+\left(v \cdot v_{n}\right)^{2}\right)^{1 / 2}$, which is certainly continuous in $v_{1}, \cdots, v_{n}$ hence in $\ell$ since $G_{n}\left(\mathbb{R}^{k}\right)$ has the quotient topology from $V_{n}\left(\mathbb{R}^{k}\right)$. Now for an $n$-plane $\ell^{\prime} \neq \ell$ choose $v \in \ell-\ell^{\prime}$, and then $f_{v}(\ell)=|v|>f_{v}\left(\ell^{\prime}\right)$.

In order to construct the CW structure we need some notation and terminology. In $\mathbb{R}^{\infty}$ we have the standard subspaces $\mathbb{R}^{1} \subset \mathbb{R}^{2} \subset \cdots$. For an $n$-plane $\ell \in G_{n}$ there is then the increasing chain of subspaces $\ell_{j}=\ell \cap \mathbb{R}^{j}$, with $\ell_{j}=\ell$ for large $j$. Each $\ell_{j}$ either equals $\ell_{j-1}$ or has dimension one greater than $\ell_{j-1}$ since $\ell_{j}$ is spanned by $\ell_{j-1}$ together with any vector in $\ell_{j}-\ell_{j-1}$. Let $\sigma_{i}(\ell)$ be the minimum $j$ such that $\ell_{j}$ has dimension $i$. The increasing sequence $\sigma(\ell)=\left(\sigma_{1}(\ell), \cdots, \sigma_{n}(\ell)\right)$ is called the Schubert symbol of $\ell$. For example, if $\ell$ is the standard $\mathbb{R}^{n} \subset \mathbb{R}^{\infty}$ then $\ell_{j}=\mathbb{R}^{j}$ for $j \leq n$ and $\sigma\left(\mathbb{R}^{n}\right)=(1,2, \cdots, n)$. Clearly, $\mathbb{R}^{n}$ is the only $n$-plane with this Schubert symbol.

For a Schubert symbol $\sigma=\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ let $e(\sigma)=\left\{\ell \in G_{n} \mid \sigma(\ell)=\sigma\right\}$.

Proposition 1.15. $e(\sigma)$ is an open cell of dimension $\left(\sigma_{1}-1\right)+\left(\sigma_{2}-2\right)+\cdots+\left(\sigma_{n}-n\right)$, and these cells $e(\sigma)$ are the cells of a CW structure on $G_{n}$. The subspace $G_{n}\left(\mathbb{R}^{k}\right)$ is the finite subcomplex consisting of cells with $\sigma_{n} \leq k$.

For example $G_{2}\left(\mathbb{R}^{4}\right)$ has six cells corresponding to the Schubert symbols $(1,2)$, $(1,3),(1,4),(2,3),(2,4),(3,4)$, and these cells have dimensions $0,1,2,2,3,4$ respectively.

Proof: Our main task will be to find a characteristic map for $e(\sigma)$. Note first that $e(\sigma) \subset G_{n}\left(\mathbb{R}^{k}\right)$ for $k \geq \sigma_{n}$. Let $H_{i}$ be the hemisphere in $S^{\sigma_{i}-1} \subset \mathbb{R}^{\sigma_{i}} \subset \mathbb{R}^{k}$ consisting of unit vectors with non-negative $\sigma_{i}$-th coordinate. In the Stiefel manifold $V_{n}\left(\mathbb{R}^{k}\right)$ let $E(\sigma)$ be the subspace of orthonormal frames $\left(v_{1}, \cdots, v_{n}\right) \in\left(S^{k-1}\right)^{n}$ such that $v_{i} \in H_{i}$ for each $i$. We claim that the projection $\pi: E(\sigma) \rightarrow H_{1}, \pi\left(v_{1}, \cdots, v_{n}\right)=v_{1}$, is a trivial fiber bundle. This is equivalent to finding a projection $p: E(\sigma) \rightarrow \pi^{-1}\left(v_{0}\right)$ which is a homeomorphism on fibers of $\pi$, where $v_{0}=(0, \cdots, 0,1) \in \mathbb{R}^{\sigma_{1}} \subset \mathbb{R}^{k}$, since the map $\pi \times p: E(\sigma) \rightarrow H_{1} \times \pi^{-1}\left(v_{0}\right)$ is then a continuous bijection of compact Hausdorff spaces, hence a homeomorphism. The map $p: \pi^{-1}(v) \rightarrow \pi^{-1}\left(v_{0}\right)$ is obtained by applying the rotation $\rho_{v}$ of $\mathbb{R}^{k}$ that takes $v$ to $v_{0}$ and fixes the ( $k-2$ )-dimensional subspace orthogonal to $v$ and $v_{0}$. This rotation takes $H_{i}$ to itself for $i>1$ since it affects only the first $\sigma_{1}$ coordinates of vectors in $\mathbb{R}^{k}$. Hence $p$ takes $\pi^{-1}(v)$ onto $\pi^{-1}\left(v_{0}\right)$.

The fiber $\pi^{-1}\left(v_{0}\right)$ can be identified with $E\left(\sigma^{\prime}\right)$ for $\sigma^{\prime}=\left(\sigma_{2}-1, \cdots, \sigma_{n}-1\right)$. By induction on $n$ this is homeomorphic to a closed ball of dimension $\left(\sigma_{2}-2\right)+\cdots+$ ( $\sigma_{n}-n$ ), so $E(\sigma)$ is a closed ball of dimension $\left(\sigma_{1}-1\right)+\cdots+\left(\sigma_{n}-n\right)$.

The natural map $E(\sigma) \rightarrow G_{n}$ sending an orthonormal $n$-tuple to the $n$-plane it spans takes the interior of the ball $E(\sigma)$ to $e(\sigma)$ bijectively since each $\ell \in e(\sigma)$ has a unique basis $\left(v_{1}, \cdots, v_{n}\right) \in \operatorname{int} E(\sigma)$. Namely, consider the sequence of subspaces $\ell_{\sigma_{1}} \subset \cdots \subset \ell_{\sigma_{n}}$, and choose $v_{i} \in \ell_{\sigma_{i}}$ to be the unit vector with positive $\sigma_{i}$-th coordinate orthogonal to $\ell_{\sigma_{i-1}}$. Since $G_{n}$ has the quotient topology from $V_{n}$, the map $\operatorname{int} E(\sigma) \rightarrow e(\sigma)$ is a homeomorphism, so $e(\sigma)$ is an open cell of dimension $\left(\sigma_{1}-1\right)+\cdots+\left(\sigma_{n}-n\right)$. The boundary of $E(\sigma)$ maps to cells $e\left(\sigma^{\prime}\right)$ of $G_{n}$ where $\sigma^{\prime}$ is obtained from $\sigma$ by decreasing some $\sigma_{i}$ 's, so these cells $e\left(\sigma^{\prime}\right)$ have lower dimension than $e(\sigma)$.

It is clear from the definitions that $G_{n}\left(\mathbb{R}^{k}\right)$ is the union of the cells $e(\sigma)$ with $\sigma_{n} \leq k$. To see that the maps $E(\sigma) \rightarrow G_{n}\left(\mathbb{R}^{k}\right)$ for these cells are the characteristic maps for a CW structure on $G_{n}\left(\mathbb{R}^{k}\right)$ we can argue as follows. For fixed $k$, let $X^{i}$ be the union of the cells $e(\sigma)$ in $G_{n}\left(\mathbb{R}^{k}\right)$ having dimension at most $i$. Suppose by induction on $i$ that $X^{i}$ is a CW complex with these cells. Attaching the ( $i+1$ )-cells $e(\sigma)$ of $X^{i+1}$ to $X^{i}$ via the maps $\partial E(\sigma) \rightarrow X^{i}$ produces a CW complex $Y$ and a natural continuous bijection $Y \rightarrow X^{i+1}$. Since $Y$ is a finite CW complex it is compact, and $X^{i+1}$ is Hausdorff as a subspace of $G_{n}\left(\mathbb{R}^{k}\right)$, so the map $Y \rightarrow X^{i+1}$ is a homeomorphism and $X^{i+1}$ is a CW complex, finishing the induction. Thus we have a CW structure on $G_{n}\left(\mathbb{R}^{k}\right)$.

Since the inclusions $G_{n}\left(\mathbb{R}^{k}\right) \subset G_{n}\left(\mathbb{R}^{k+1}\right)$ for varying $k$ are inclusions of subcom-
plexes, and $G_{n}\left(\mathbb{R}^{\infty}\right)$ has the weak topology with respect to these subspaces, it follows that we have a CW structure on $G_{n}\left(\mathbb{R}^{\infty}\right)$.

Similar constructions work to give CW structures on complex Grassmann manifolds, but here $e(\sigma)$ will be a cell of dimension $\left(2 \sigma_{1}-2\right)+\left(2 \sigma_{2}-4\right)+\cdots+\left(2 \sigma_{n}-2 n\right)$. The 'hemisphere' $H_{i}$ is defined to be the subspace of the unit sphere $S^{2 \sigma_{i}-1}$ in $\mathbb{C}^{\sigma_{i}}$ consisting of vectors whose $\sigma_{i}$-th coordinate is non-negative real, so $H_{i}$ is a ball of dimension $2 \sigma_{i}-2$. The transformation $\rho_{v} \in S U(k)$ is uniquely determined by specifying that it takes $v$ to $v_{0}$ and fixes the orthogonal ( $k-2$ )-dimensional complex subspace, since an element of $U(2)$ of determinant 1 is determined by where it sends one unit vector.

The highest-dimensional cell of $G_{n}\left(\mathbb{R}^{k}\right)$ is $e(\sigma)$ for $\sigma=(k-n+1, k-n+2, \cdots, k)$, of dimension $n(k-n)$, so this is the dimension of $G_{n}\left(\mathbb{R}^{k}\right)$. Near points in these topdimensional cells $G_{n}\left(\mathbb{R}^{k}\right)$ is a manifold. But $G_{n}\left(\mathbb{R}^{k}\right)$ is homogeneous in the sense that given any two points in $G_{n}\left(\mathbb{R}^{k}\right)$ there is a homeomorphism $G_{n}\left(\mathbb{R}^{k}\right) \rightarrow G_{n}\left(\mathbb{R}^{k}\right)$ taking one point to the other, namely, the homeomorphism induced by an invertible linear $\operatorname{map} \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ taking one $n$-plane to the other. From this homogeneity it follows that $G_{n}\left(\mathbb{R}^{k}\right)$ is a manifold near all points. Since it is compact, it is a closed manifold.

There is a natural inclusion $i: G_{n} \hookrightarrow G_{n+1}, i(\ell)=\mathbb{R} \times j(\ell)$ where $j: \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ is the embedding $j\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, x_{2}, \cdots\right)$. If $\sigma(\ell)=\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ then $\sigma(i(\ell))=$ $\left(1, \sigma_{1}+1, \cdots, \sigma_{n}+1\right)$, so $i$ takes cells of $G_{n}$ to cells of $G_{n+1}$ of the same dimension, making $i\left(G_{n}\right)$ a subcomplex of $G_{n+1}$. Identifying $G_{n}$ with the subcomplex $i\left(G_{n}\right)$, we obtain an increasing sequence of CW complexes $G_{1} \subset G_{2} \subset \cdots$ whose union $G_{\infty}=\bigcup_{n} G_{n}$ is therefore also a CW complex. Similar remarks apply as well in the complex case.

## Appendix: Paracompactness

A Hausdorff space $X$ is paracompact if for each open cover $\left\{U_{\alpha}\right\}$ of $X$ there is a partition of unity $\left\{\varphi_{\beta}\right\}$ subordinate to the cover. This means that the $\varphi_{\beta}$ 's are maps $X \rightarrow I$ such that each $\varphi_{\beta}$ has support (the closure of the set where $\varphi_{\beta} \neq 0$ ) contained in some $U_{\alpha}$, each $x \in X$ has a neighborhood in which only finitely many $\varphi_{\beta}$ 's are nonzero, and $\sum_{\beta} \varphi_{\beta}=1$. An equivalent definition which is often given is that $X$ is Hausdorff and every open cover of $X$ has a locally finite open refinement. The first definition clearly implies the second by taking the cover $\left\{\varphi_{\beta}^{-1}(0,1]\right\}$. For the converse, see [Dugundji] or [Lundell-Weingram]. It is the former definition which is most useful in algebraic topology, and the fact that the two definitions are equivalent is rarely if ever needed. So we shall use the first definition.

A paracompact space $X$ is normal, for let $A_{1}$ and $A_{2}$ be disjoint closed sets in $X$, and let $\left\{\varphi_{\beta}\right\}$ be a partition of unity subordinate to the cover $\left\{X-A_{1}, X-A_{2}\right\}$. Let $\varphi_{i}$ be the sum of the $\varphi_{\beta}$ 's which are nonzero at some point of $A_{i}$. Then $\varphi_{i}\left(A_{i}\right)=1$, and
$\varphi_{1}+\varphi_{2} \leq 1$ since no $\varphi_{\beta}$ can be a summand of both $\varphi_{1}$ and $\varphi_{2}$. Hence $\varphi_{1}^{-1}(1 / 2,1]$ and $\varphi_{2}^{-1}(1 / 2,1]$ are disjoint open sets containing $A_{1}$ and $A_{2}$, respectively.

Most of the spaces one meets in algebraic topology are paracompact, including:
(1) compact Hausdorff spaces
(2) unions of increasing sequences $X_{1} \subset X_{2} \subset \cdots$ of compact Hausdorff spaces $X_{i}$, with the weak or direct limit topology (a set is open iff it intersects each $X_{i}$ in an open set)
(3) CW complexes
(4) metric spaces

Note that (2) includes (3) for CW complexes with countably many cells, since such a CW complex can be expressed as an increasing union of finite subcomplexes. Using (1) and (2), it can be shown that many manifolds are paracompact, for example $\mathbb{R}^{n}$.

The next three propositions verify that the spaces in (1), (2), and (3) are paracompact.

## $\|$ Proposition 1.16. A compact Hausdorff space $X$ is paracompact.

Proof: Let $\left\{U_{\alpha}\right\}$ be an open cover of $X$. Since $X$ is normal, each $x \in X$ has an open neighborhood $V_{x}$ with closure contained in some $U_{\alpha}$. By Urysohn's lemma there is a map $\varphi_{x}: X \rightarrow I$ with $\varphi_{x}(x)=1$ and $\varphi_{x}\left(X-V_{x}\right)=0$. The open cover $\left\{\varphi_{x}^{-1}(0,1]\right\}$ of $X$ contains a finite subcover, and we relabel the corresponding $\varphi_{x}$ 's as $\varphi_{\beta}$ 's. Then $\sum_{\beta} \varphi_{\beta}(x)>0$ for all $x$, and we obtain the desired partition of unity subordinate to $\left\{U_{\alpha}\right\}$ by normalizing each $\varphi_{\beta}$ by dividing it by $\sum_{\beta} \varphi_{\beta}$.

Proposition 1.17. If $X$ is the direct limit of an increasing sequence $X_{1} \subset X_{2} \subset \cdots$ of compact Hausdorff spaces $X_{i}$, then $X$ is paracompact.

Proof: A preliminary observation is that $X$ is normal. To show this, it suffices to find a map $f: X \rightarrow I$ with $f(A)=0$ and $f(B)=1$ for any two disjoint closed sets $A$ and $B$. Such an $f$ can be constructed inductively over the $X_{i}$ 's, using normality of the $X_{i}$ 's. For the induction step one has $f$ defined on the closed set $X_{i} \cup\left(A \cap X_{i+1}\right) \cup\left(B \cap X_{i+1}\right)$ and one extends over $X_{i+1}$ by Tietze's theorem.

To prove that $X$ is paracompact, let an open cover $\left\{U_{\alpha}\right\}$ be given. Since $X_{i}$ is compact Hausdorff, there is a finite partition of unity $\left\{\varphi_{i j}\right\}$ on $X_{i}$ subordinate to $\left\{U_{\alpha} \cap X_{i}\right\}$. Using normality of $X$, extend each $\varphi_{i j}$ to a map $\varphi_{i j}: X \rightarrow I$ with support in the same $U_{\alpha}$. Let $\sigma_{i}=\sum_{j} \varphi_{i j}$. This sum is 1 on $X_{i}$, so if we normalize each $\varphi_{i j}$ by dividing it by $\max \left\{1 / 2, \sigma_{i}\right\}$, we get new maps $\varphi_{i j}$ with $\sigma_{i}=1$ in a neighborhood $V_{i}$ of $X_{i}$. Let $\Psi_{i j}=\max \left\{0, \varphi_{i j}-\sum_{k<i} \sigma_{k}\right\}$. Since $0 \leq \psi_{i j} \leq \varphi_{i j}$, the collection $\left\{\psi_{i j}\right\}$ is subordinate to $\left\{U_{\alpha}\right\}$. In $V_{i}$ all $\psi_{k j}$ 's with $k>i$ are zero, so each point of $X$ has a neighborhood in which only finitely many $\psi_{i j}$ 's are nonzero. For each $x \in X$ there is a $\psi_{i j}$ with $\Psi_{i j}(x)>0$, since if $\varphi_{i j}(x)>0$ and $i$ is minimal with respect to this
condition, then $\psi_{i j}(x)=\varphi_{i j}(x)$. Thus when we normalize the collection $\left\{\Psi_{i j}\right\}$ by dividing by $\sum_{i, j} \psi_{i j}$ we obtain a partition of unity on $X$ subordinate to $\left\{U_{\alpha}\right\}$.

## || Proposition 1.18. Every CW complex is paracompact.

Proof: Given an open cover $\left\{U_{\alpha}\right\}$ of a CW complex $X$, suppose inductively that we have a partition of unity $\left\{\varphi_{\beta}\right\}$ on $X^{n}$ subordinate to the cover $\left\{U_{\alpha} \cap X^{n}\right\}$. For a cell $e_{\gamma}^{n+1}$ with characteristic map $\Phi_{\gamma}: D^{n+1} \rightarrow X,\left\{\varphi_{\beta} \Phi_{\gamma}\right\}$ is a partition of unity on $S^{n}=\partial D^{n+1}$. Since $S^{n}$ is compact, only finitely many of these compositions $\varphi_{\beta} \Phi_{\gamma}$ can be nonzero, for fixed $\gamma$. We extend these functions $\varphi_{\beta} \Phi_{\gamma}$ over $D^{n+1}$ by the formula $\rho_{\varepsilon}(r) \varphi_{\beta} \Phi_{\gamma}(x)$ using 'spherical coordinates' $(r, x) \in I \times S^{n}$ on $D^{n+1}$, where $\rho_{\varepsilon}: I \rightarrow I$ is 0 on $[0,1-\varepsilon]$ and 1 on $[1-\varepsilon / 2,1]$. If $\varepsilon=\varepsilon_{\gamma}$ is chosen small enough, these extended functions $\rho_{\varepsilon} \varphi_{\beta} \Phi_{\gamma}$ will be subordinate to the cover $\left\{\Phi_{\gamma}^{-1}\left(U_{\alpha}\right)\right\}$. Let $\left\{\psi_{\gamma j}\right\}$ be a finite partition of unity on $D^{n+1}$ subordinate to $\left\{\Phi_{\gamma}^{-1}\left(U_{\alpha}\right)\right\}$. Then $\left\{\rho_{\varepsilon} \varphi_{\beta} \Phi_{\gamma},\left(1-\rho_{\varepsilon}\right) \psi_{\gamma j}\right\}$ is a partition of unity on $D^{n+1}$ subordinate to $\left\{\Phi_{\gamma}^{-1}\left(U_{\alpha}\right)\right\}$. This partition of unity extends the partition of unity $\left\{\varphi_{\beta} \Phi_{\gamma}\right\}$ on $S^{n}$ and induces an extension of $\left\{\varphi_{\beta}\right\}$ to a partition of unity defined on $X^{n} \cup e_{\gamma}^{n+1}$ and subordinate to $\left\{U_{\alpha}\right\}$. Doing this for all ( $n+1$ )-cells $e_{\gamma}^{n+1}$ gives a partition of unity on $X^{n+1}$. The local finiteness condition continues to hold since near a point in $X^{n}$ only the extensions of the $\varphi_{\beta}$ 's in the original partition of unity on $X^{n}$ are nonzero, while in a cell $e_{\gamma}^{n+1}$ the only other functions that can be nonzero are the ones coming from $\psi_{\gamma j}$ 's. After we make such extensions for all $n$, we obtain a partition of unity defined on all of $X$ and subordinate to $\left\{U_{\alpha}\right\}$.

Here is a technical fact about paracompact spaces that is occasionally useful:
Lemma 1.19. Given an open cover $\left\{U_{\alpha}\right\}$ of the paracompact space $X$, there is a countable open cover $\left\{V_{k}\right\}$ such that each $V_{k}$ is a disjoint union of open sets each contained in some $U_{\alpha}$, and there is a partition of unity $\left\{\varphi_{k}\right\}$ with $\varphi_{k}$ supported in $V_{k}$.

Proof: Let $\left\{\varphi_{\beta}\right\}$ be a partition of unity subordinate to $\left\{U_{\alpha}\right\}$. For each finite set $S$ of functions $\varphi_{\beta}$ let $V_{S}$ be the subset of $X$ where all the $\varphi_{\beta}$ 's in $S$ are strictly greater than all the $\varphi_{\beta}$ 's not in $S$. Since only finitely many $\varphi_{\beta}$ 's are nonzero near any $x \in X$, $V_{S}$ is defined by finitely many inequalities among $\varphi_{\beta}$ 's near $x$, so $V_{S}$ is open. Also, $V_{S}$ is contained in some $U_{\alpha}$, namely, any $U_{\alpha}$ containing the support of any $\varphi_{\beta} \in S$, since $\varphi_{\beta} \in S$ implies $\varphi_{\beta}>0$ on $V_{S}$. Let $V_{k}$ be the union of all the open sets $V_{S}$ such that $S$ has $k$ elements. This is clearly a disjoint union. The collection $\left\{V_{k}\right\}$ is a cover of $X$ since if $x \in X$ then $x \in V_{S}$ where $S=\left\{\varphi_{\beta} \mid \varphi_{\beta}(x)>0\right\}$.

For the second statement, let $\left\{\varphi_{\gamma}\right\}$ be a partition of unity subordinate to the cover $\left\{V_{k}\right\}$, and let $\varphi_{k}$ be the sum of those $\varphi_{\gamma}$ 's supported in $V_{k}$ but not in $V_{j}$ for $j<k$.

## Exercises

1. Show that a vector bundle $E \rightarrow X$ has $k$ independent sections iff it has a trivial $k$-dimensional subbundle.
2. For a vector bundle $E \rightarrow X$ with a subbundle $E^{\prime} \subset E$, construct a quotient vector bundle $E / E^{\prime} \rightarrow X$.
3. Show that the orthogonal complement of a subbundle is independent of the choice of inner product, up to isomorphism.
4. A vector bundle map is a commutative diagram

where the two vertical maps are vector bundle projections and $\tilde{f}$ is an isomorphism on each fiber. Given such a bundle map, show that $E^{\prime}$ is isomorphic to the pullback bundle $f^{*}(E)$.
5. Show that the projection $V_{n}\left(R^{k}\right) \rightarrow G_{n}\left(\mathbb{R}^{k}\right)$ is a fiber bundle with fiber $O(n)$ by showing that it is the orthonormal $n$-frame bundle associated to the vector bundle $E_{n}\left(\mathbb{R}^{k}\right) \rightarrow G_{n}\left(\mathbb{R}^{k}\right)$.
6. Show that the pair $\left(G_{n}\left(\mathbb{R}^{\infty}\right), G_{n}\left(\mathbb{R}^{k}\right)\right)$ is $(k-n)$-connected, and deduce that Proposition 1.9 holds for finite-dimensional CW complexes. [The lowest-dimensional cell of $G_{n}\left(\mathbb{R}^{k+1}\right)-G_{n}\left(\mathbb{R}^{k}\right)$ is the $e(\sigma)$ with $\sigma=(1,2, \cdots, n-1, k+1)$, and this cell has dimension $k+1-n$.]

# Chaptter 2 <br> <br> Complex K-Theory 

 <br> <br> Complex K-Theory}

The idea of K-theory is to make the direct sum operation on real or complex vector bundles over a fixed base space $X$ into the addition operation in a group. There are two slightly different ways of doing this, producing, in the case of complex vector bundles, groups $K(X)$ and $\tilde{K}(X)$ with $K(X) \approx \tilde{K}(X) \oplus \mathbb{Z}$, and for real vector bundles, groups $K O(X)$ and $\widetilde{K O}(X)$ with $K O(X) \approx \widetilde{K O}(X) \oplus \mathbb{Z}$. Complex K-theory turns out to be somewhat simpler than real K-theory, so we concentrate on this case in the present chapter.

Computing $\tilde{K}(X)$ even for simple spaces $X$ requires some work. The case $X=S^{n}$ involves the Bott Periodicity Theorem, proved in §2.2. This is a deep theorem, so it is not surprising that it has applications of real substance, and we give some of these in §2.3, notably Adams' theorem on the Hopf invariant with its corollary on the nonexistence of division algebras over $\mathbb{R}$ in dimensions other than $1,2,4$, and 8 , the dimensions of the real and complex numbers, quaternions, and Cayley octonions. A further application to the J-homomorphism is delayed until the next chapter when we combine K-theory with ordinary cohomology.

## 1. The Functor $K(X)$

Since we shall be dealing almost exclusively with complex vector bundles in this chapter, let us take 'vector bundle' to mean generally 'complex vector bundle' unless otherwise specified. Base spaces will always be assumed paracompact, in particular Hausdorff, so that the results of Chapter 1 which presume paracompactness will be available to us.

For the purposes of K-theory it is convenient to take a slightly broader definition of 'vector bundle' which allows the fibers of a vector bundle $p: E \rightarrow X$ to be vector spaces of different dimensions. We still assume local trivializations of the form $h: p^{-1}(U) \rightarrow U \times \mathbb{C}^{n}$, so the dimensions of fibers must be locally constant over $X$, but if $X$ is disconnected the dimensions of fibers need not be globally constant.

Consider vector bundles over a fixed base space $X$. The trivial $n$-dimensional vector bundle we write as $\varepsilon^{n} \rightarrow X$. Define two vector bundles $E_{1}$ and $E_{2}$ over $X$ to be stably isomorphic, written $E_{1} \approx_{s} E_{2}$, if $E_{1} \oplus \varepsilon^{n} \approx E_{2} \oplus \varepsilon^{n}$ for some $n$. In a similar vein we set $E_{1} \sim E_{2}$ if $E_{1} \oplus \varepsilon^{m} \approx E_{2} \oplus \varepsilon^{n}$ for some $m$ and $n$. It is easy to see that both $\approx_{s}$ and $\sim$ are equivalence relations. On equivalence classes of either sort the operation of direct sum is well-defined, commutative, and associative. A zero element is the class of $\varepsilon^{0}$.

Proposition 2.1. If $X$ is compact Hausdorff, then the set of $\sim-$ equivalence classes of vector bundles over $X$ forms an abelian group with respect to $\oplus$.

This group is called $\widetilde{K}(X)$.
Proof: Only the existence of inverses needs to be shown, which we do by showing that for each vector bundle $\pi: E \rightarrow X$ there is a bundle $E^{\prime} \rightarrow X$ such that $E \oplus E^{\prime} \approx \varepsilon^{m}$ for some $m$. If all the fibers of $E$ have the same dimension, this is Proposition 1.9. In the general case let $X_{i}=\left\{x \in X \mid \operatorname{dim} \pi^{-1}(x)=i\right\}$. These $X_{i}$ 's are disjoint open sets in $X$, hence are finite in number by compactness. By adding to $E$ a bundle which over each $X_{i}$ is a trivial bundle of suitable dimension we can produce a bundle whose fibers all have the same dimension.

For the direct sum operation on $\approx_{s}$-equivalence classes, only the zero element, the class of $\varepsilon^{0}$, can have an inverse since $E \oplus E^{\prime} \approx_{s} \varepsilon^{0}$ implies $E \oplus E^{\prime} \oplus \varepsilon^{n} \approx \varepsilon^{n}$ for some $n$, which can only happen if $E$ and $E^{\prime}$ are 0-dimensional. However, even though inverses do not exist, we do have the cancellation property that $E_{1} \oplus E_{2} \approx_{s} E_{1} \oplus E_{3}$ implies $E_{2} \approx_{s} E_{3}$ over a compact base space $X$, since we can add to both sides of $E_{1} \oplus E_{2} \approx_{s} E_{1} \oplus E_{3}$ a bundle $E_{1}^{\prime}$ such that $E_{1} \oplus E_{1}^{\prime} \approx \varepsilon^{n}$ for some $n$.

Just as the positive rational numbers are constructed from the positive integers by forming quotients $a / b$ with the equivalence relation $a / b=c / d$ iff $a d=b c$, so we can form for compact $X$ an abelian group $K(X)$ consisting of formal differences $E-E^{\prime}$ of vector bundles $E$ and $E^{\prime}$ over $X$, with the equivalence relation $E_{1}-E_{1}^{\prime}=E_{2}-E_{2}^{\prime}$ iff $E_{1} \oplus E_{2}^{\prime} \approx_{s} E_{2} \oplus E_{1}^{\prime}$. Verifying transitivity of this relation involves the cancellation property, which is why compactness of $X$ is needed. With the obvious addition rule $\left(E_{1}-E_{1}^{\prime}\right)+\left(E_{2}-E_{2}^{\prime}\right)=\left(E_{1} \oplus E_{2}\right)-\left(E_{1}^{\prime} \oplus E_{2}^{\prime}\right), K(X)$ is then a group. The zero element is the equivalence class of $E-E$ for any $E$, and the inverse of $E-E^{\prime}$ is $E^{\prime}-E$. Note that every element of $K(X)$ can be represented as a difference $E-\varepsilon^{n}$ since if we start with $E-E^{\prime}$ we can add to both $E$ and $E^{\prime}$ a bundle $E^{\prime \prime}$ such that $E^{\prime} \oplus E^{\prime \prime} \approx \varepsilon^{n}$ for some $n$.

There is a natural homomorphism $K(X) \rightarrow \widetilde{K}(X)$ sending $E-\varepsilon^{n}$ to the $\sim$-class of $E$. This is well-defined since if $E-\varepsilon^{n}=E^{\prime}-\varepsilon^{m}$ in $K(X)$, then $E \oplus \varepsilon^{m} \approx_{s} E^{\prime} \oplus \varepsilon^{n}$, hence $E \sim E^{\prime}$. The map $K(X) \rightarrow \tilde{K}(X)$ is obviously surjective, and its kernel consists of elements $E-\varepsilon^{n}$ with $E \sim \varepsilon^{0}$, hence $E \approx_{s} \varepsilon^{m}$ for some $m$, so the kernel consists of the elements of the form $\varepsilon^{m}-\varepsilon^{n}$. This subgroup $\left\{\varepsilon^{m}-\varepsilon^{n}\right\}$ of $K(X)$ is isomorphic to $\mathbb{Z}$.

In fact, restriction of vector bundles to a basepoint $x_{0} \in X$ defines a homomorphism $K(X) \rightarrow K\left(x_{0}\right) \approx \mathbb{Z}$ which restricts to an isomorphism on the subgroup $\left\{\varepsilon^{m}-\varepsilon^{n}\right\}$. Thus we have a splitting $K(X) \approx \tilde{K}(X) \oplus \mathbb{Z}$, depending on the choice of $x_{0}$. The group $\tilde{K}(X)$ is sometimes called reduced, to distinguish it from $K(X)$.

Let us compute a few examples. The complex version of Proposition 1.10 gives a bijection between the set $\operatorname{Vect}_{\mathbb{C}}^{k}\left(S^{n}\right)$ of isomorphism classes of $k$-dimensional vector bundles over $S^{n}$ and $\pi_{n-1} U(k)$. Under this bijection, adding a trivial line bundle corresponds to including $U(k)$ in $U(k+1)$ by adjoining an $(n+1)^{\text {st }}$ row and column consisting of zeros except for a single 1 on the diagonal. Let $U=\bigcup_{k} U(k)$ with the weak topology: a subset of $U$ is open iff it intersects each $U(k)$ in an open set in $U(k)$. This implies that each compact subset of $U$ is contained in some $U(k)$, and it follows that the bijections $\operatorname{Vect}_{\mathbb{C}}^{k}\left(S^{n}\right) \approx \pi_{n-1} U(k)$ induce a bijection $\widetilde{K}\left(S^{n}\right) \approx \pi_{n-1} U$.
$\|$ Proposition 2.2. This bijection $\tilde{K}\left(S^{n}\right) \approx \pi_{n-1} U$ is a group isomorphism.
Proof: We need to see that the two group operations correspond. Represent two elements of $\pi_{n-1} U$ by maps $f, g: S^{n-1} \rightarrow U(k)$ taking the basepoint of $S^{n-1}$ to the identity matrix. The sum in $\widetilde{K}\left(S^{n}\right)$ then corresponds to the map $f \oplus g: S^{n-1} \rightarrow U(2 k)$ having the matrices $f(x)$ in the upper left $k \times k$ block and the matrices $g(x)$ in the lower right $k \times k$ block, the other two blocks being zero. Since $\pi_{0} U(2 k)=0$, there is a path $\alpha_{t} \in U(2 k)$ from the identity to the matrix of the transformation which interchanges the two factors of $\mathbb{C}^{k} \times \mathbb{C}^{k}$. Then the matrix product $(f \oplus \mathbb{1}) \alpha_{t}(\mathbb{1} \oplus g) \alpha_{t}$ gives a homotopy from $f \oplus g$ to $f g \oplus \mathbb{1}$.

It remains to see that the matrix product $f g$ represents the sum $[f]+[g]$ in $\pi_{n-1} U(k)$. This is a general fact about H -spaces which can be seen in the following way. The standard definition of the sum in $\pi_{n-1} U(k)$ is $[f]+[g]=[f+g]$ where the map $f+g$ consists of a compressed version of $f$ on one hemisphere of $S^{n-1}$ and a compressed version of $g$ on the other. We can realize this map $f+g$ as a product $f_{1} g_{1}$ of maps $S^{n-1} \rightarrow U(k)$ each mapping one hemisphere to the identity. There are homotopies $f_{t}$ from $f=f_{0}$ to $f_{1}$ and $g_{t}$ from $g=g_{0}$ to $g_{1}$. Then $f_{t} g_{t}$ is a homotopy from $f g$ to $f_{1} g_{1}=f+g$.

This proposition generalizes easily to suspensions: For all compact $X, \widetilde{K}(S X)$ is isomorphic to $\langle X, U\rangle$, the group of basepoint-preserving homotopy classes of maps $X \rightarrow U$.

From the calculations of $\pi_{i} U$ in $\S 1.2$ we deduce that $\widetilde{K}\left(S^{n}\right)$ is $0, \mathbb{Z}, 0, \mathbb{Z}$ for $n=1,2,3,4$. This alternation of 0 's and $\mathbb{Z}$ 's continues for all higher dimensional spheres:

Bott Periodicity Theorem. There are isomorphisms $\tilde{K}\left(S^{n}\right) \approx \tilde{K}\left(S^{n+2}\right)$ for all $n \geq$ 0 . More generally, there are isomorphisms $\tilde{K}(X) \approx \tilde{K}\left(S^{2} X\right)$ for all compact $X$, where $S^{2} X$ is the double suspension of $X$.

The theorem actually says that a certain natural map $\beta: \widetilde{K}(X) \rightarrow \widetilde{K}\left(S^{2} X\right)$ defined later in this section is an isomorphism. There is an equivalent form of Bott periodicity involving $K(X)$ rather than $\tilde{K}(X)$, an isomorphism $\mu: K(X) \otimes K\left(S^{2}\right) \xrightarrow{\approx} K\left(X \times S^{2}\right)$. The map $\mu$ is easier to define than $\beta$, so this is what we will do next. Then we will set up some formal machinery which in particular shows that the two versions of Bott Periodicity are equivalent. The second version is the one which will be proved in §2.2.

## Ring Structure

Besides the additive structure in $K(X)$ there is also a natural multiplication coming from tensor product of vector bundles. For elements of $K(X)$ represented by vector bundles $E_{1}$ and $E_{2}$ their product in $K(X)$ will be represented by the bundle $E_{1} \otimes E_{2}$, so for arbitrary elements of $K(X)$ represented by differences of vector bundles, their product in $K(X)$ is defined by the formula

$$
\left(E_{1}-E_{1}^{\prime}\right)\left(E_{2}-E_{2}^{\prime}\right)=E_{1} \otimes E_{2}-E_{1} \otimes E_{2}^{\prime}-E_{1}^{\prime} \otimes E_{2}+E_{1}^{\prime} \otimes E_{2}^{\prime}
$$

It is routine to verify that this is well-defined and makes $K(X)$ into a commutative ring with identity $\varepsilon^{1}$, the trivial line bundle, using the basic properties of tensor product of vector bundles described in $\S 1.1$. We can simplify notation by writing the element $\varepsilon^{n} \in K(X)$ just as $n$. This is consistent with familiar arithmetic rules. For example, the product $n E$ is the sum of $n$ copies of $E$.

If we choose a basepoint $x_{0} \in X$, then the map $K(X) \rightarrow K\left(x_{0}\right)$ obtained by restricting vector bundles over $x_{0}$ is a ring homomorphism. Its kernel, which can be identified with $\widetilde{K}(X)$, is an ideal, hence also a ring in its own right, though not necessarily a ring with identity.

Example 2.3. Let us compute the ring structure in $K\left(S^{2}\right)$. As an abelian group, $K\left(S^{2}\right)$ is isomorphic to $\tilde{K}\left(S^{2}\right) \oplus \mathbb{Z} \approx \mathbb{Z} \oplus \mathbb{Z}$, with additive basis $\{1, H\}$ where $H$ is the canonical line bundle over $\mathbb{C} \mathrm{P}^{1}=S^{2}$, by Proposition 2.2 and the calculations in $\S 1.2$. We use the notation ' $H$ ' for the canonical line bundle over $\mathbb{C} \mathrm{P}^{1}$ since its unit sphere bundle is the Hopf bundle $S^{3} \rightarrow S^{2}$. To determine the ring structure in $K\left(S^{2}\right)$ we have only to express the element $H^{2}$, represented by the tensor product $H \otimes H$, as a linear combination of 1 and $H$. The claim is that the bundle $(H \otimes H) \oplus 1$ is isomorphic to $H \oplus H$. This can be seen by looking at the clutching functions for these two bundles, which are the maps $S^{1} \rightarrow U(2)$ given by

$$
z \mapsto\left(\begin{array}{cc}
z^{2} & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad z \mapsto\left(\begin{array}{cc}
z & 0 \\
0 & z
\end{array}\right)
$$

With the notation used in the proof of Proposition 2.2, these are the clutching functions $f g \oplus \mathbb{I}$ and $f \oplus g$ where both $f$ and $g$ are the function $z \mapsto(z)$. As we showed there, the clutching functions $f g \oplus \mathbb{I}$ and $f \oplus g$ are always homotopic, so this gives the desired isomorphism $(H \otimes H) \oplus 1 \approx H \oplus H$. In $K\left(S^{2}\right)$ this is the formula $H^{2}+1=2 H$,
so $H^{2}=2 H-1$. We can also write this as $(H-1)^{2}=0$, and then $K\left(S^{2}\right)$ can be described as the quotient $\mathbb{Z}[H] /(H-1)^{2}$ of the polynomial ring $\mathbb{Z}[H]$ by the ideal generated by $(H-1)^{2}$.

Note that if we regard $\widetilde{K}\left(S^{2}\right)$ as the kernel of $K\left(S^{2}\right) \rightarrow K\left(x_{0}\right)$, then it is generated as an abelian group by $H-1$. Since we have the relation $(H-1)^{2}=0$, this means that the multiplication in $\widetilde{K}\left(S^{2}\right)$ is completely trivial: The product of any two elements is zero. Readers familiar with cup product in ordinary cohomology will recognize that the situation is exactly the same as in $H^{*}\left(S^{2} ; \mathbb{Z}\right)$ and $\tilde{H}^{*}\left(S^{2} ; \mathbb{Z}\right)$, with $H-1$ behaving exactly like the generator of $H^{2}\left(S^{2} ; \mathbb{Z}\right)$. In the case of ordinary cohomology the cup product of a generator of $H^{2}\left(S^{2} ; \mathbb{Z}\right)$ with itself is automatically zero since $H^{4}\left(S^{2} ; \mathbb{Z}\right)=0$, whereas with K-theory a calculation is required.

The rings $K(X)$ and $\widetilde{K}(X)$ can be regarded as functors of $X$. A map $f: X \rightarrow Y$ induces a map $f^{*}: K(Y) \rightarrow K(X)$, sending $E-E^{\prime}$ to $f^{*}(E)-f^{*}\left(E^{\prime}\right)$. This is a ring homomorphism since $f^{*}\left(E_{1} \oplus E_{2}\right) \approx f^{*}\left(E_{1}\right) \oplus f^{*}\left(E_{2}\right)$ and $f^{*}\left(E_{1} \otimes E_{2}\right) \approx f^{*}\left(E_{1}\right) \otimes f^{*}\left(E_{2}\right)$. The functor properties $(f g)^{*}=g^{*} f^{*}$ and $\mathbb{1}^{*}=\mathbb{1}$ as well as the fact that $f \simeq g$ implies $f^{*}=g^{*}$ all follow from the corresponding properties for pullbacks of vector bundles. Similarly, we have induced maps $f^{*}: \widetilde{K}(Y) \rightarrow \widetilde{K}(X)$ with the same properties, except that for $f^{*}$ to be a ring homomorphism we must be in the category of basepointed spaces and basepoint-preserving maps since our definition of multiplication for $\tilde{K}$ required basepoints.

An external product $\mu: K(X) \otimes K(Y) \rightarrow K(X \times Y)$ can be defined by $\mu(a \otimes b)=$ $p_{1}^{*}(a) p_{2}^{*}(b)$ where $p_{1}$ and $p_{2}$ are the projections of $X \times Y$ onto $X$ and $Y$. The tensor product of rings is a ring, with multiplication defined by $(a \otimes b)(c \otimes d)=a c \otimes b d$, and $\mu$ is a ring homomorphism since $\mu((a \otimes b)(c \otimes d))=\mu(a c \otimes b d)=p_{1}^{*}(a c) p_{2}^{*}(b d)=$ $p_{1}^{*}(a) p_{1}^{*}(c) p_{2}^{*}(b) p_{2}^{*}(d)=p_{1}^{*}(a) p_{2}^{*}(b) p_{1}^{*}(c) p_{2}^{*}(d)=\mu(a \otimes b) \mu(c \otimes d)$.

Taking $Y$ to be $S^{2}$ we have an external product

$$
\mu: K(X) \otimes K\left(S^{2}\right) \rightarrow K\left(X \times S^{2}\right)
$$

The form of Bott Periodicity which we prove in §2.2 asserts that this map is an isomorphism.

The external product in ordinary cohomology is called 'cross product' and written $a \times b$, but to use this symbol for the K-theory external product might lead to confusion with Cartesian product of vector bundles, which is quite different from tensor product. Instead we will sometimes use the notation $a * b$ as shorthand for $\mu(a \otimes b)$.

## Cohomological Properties

The reduced groups $\widetilde{K}$ satisfy a key exactness property:
Proposition 2.4. If $X$ is compact Hausdorff and $A \subset X$ is a closed subspace, then the inclusion and quotient maps $A \xrightarrow{i} X \xrightarrow{q} X / A$ induce an exact sequence $\widetilde{K}(X / A) \xrightarrow{q^{*}}$ $\widetilde{K}(X) \xrightarrow{i^{*}} \widetilde{K}(A)$.

Since $A$ is a closed subspace of a compact Hausdorff space, it is also compact Hausdorff. The quotient space $X / A$ is compact Hausdorff as well, with the Hausdorff property following from the fact that compact Hausdorff spaces are normal, hence a point $x \in X-A$ and $A$ have disjoint neighborhoods in $X$.

Proof: Recall that exactness means that the image of $q^{*}$ equals the kernel of $i^{*}$. The inclusion $\operatorname{Im} q^{*} \subset \operatorname{Ker} i^{*}$ is equivalent to $i^{*} q^{*}=0$. Since $q i$ is equal to the composition $A \rightarrow A / A \hookrightarrow X / A$ and $\widetilde{K}(A / A)=0$, it follows that $i^{*} q^{*}=0$.

For the opposite inclusion $\operatorname{Ker} i^{*} \subset \operatorname{Im} q^{*}$, suppose the restriction over $A$ of a vector bundle $p: E \rightarrow X$ is stably trivial. Adding a trivial bundle to $E$, we may assume that $E$ itself is trivial over $A$. Choosing a trivialization $h: p^{-1}(A) \rightarrow A \times \mathbb{C}^{n}$, let $E / h$ be the quotient space of $E$ under the identifications $h^{-1}(x, v) \sim h^{-1}(y, v)$ for $x, y \in A$. There is then an induced projection $E / h \rightarrow X / A$. To see that this is a vector bundle we need to find a local trivialization over a neighborhood of the point $A / A$.

We claim that since $E$ is trivial over $A$, it is trivial over some neighborhood of $A$. In many cases this holds because there is a neighborhood which deformation retracts onto $A$, so the restriction of $E$ over this neighborhood is trivial since it is isomorphic to the pullback of $p^{-1}(A)$ via the retraction. In the absence of such a deformation retraction one can make the following more complicated argument. A trivialization of $E$ over $A$ determines sections $s_{i}: A \rightarrow E$ which form a basis in each fiber over $A$. Choose a cover of $A$ by open sets $U_{j}$ in $X$ over each of which $E$ is trivial. Via a local trivialization, each section $s_{i}$ can be regarded as a map from $A \cap U_{j}$ to a single fiber, so by the Tietze extension theorem we obtain a section $s_{i j}: U_{j} \rightarrow E$ extending $s_{i}$. If $\left\{\varphi_{j}, \varphi\right\}$ is a partition of unity subordinate to the cover $\left\{U_{j}, X-A\right\}$ of $X$, the sum $\sum_{j} \varphi_{j} s_{i j}$ gives an extension of $s_{i}$ to a section defined on all of $X$. Since these sections form a basis in each fiber over $A$, they must form a basis in all nearby fibers. Namely, over $U_{j}$ the extended $s_{i}$ 's can be viewed as a square-matrix-valued function having nonzero determinant at each point of $A$, hence at nearby points as well.

Thus we have a trivialization $h$ of $E$ over a neighborhood $U$ of $A$. This induces a trivialization of $E / h$ over $U / A$, so $E / h$ is a vector bundle. It remains only to verify that $E \approx q^{*}(E / h)$. In the commutative diagram at the right the quotient map $E \rightarrow E / h$ is an isomorphism on fibers, so this map and $p$ give an isomorphism $E \approx q^{*}(E / h)$.


There is an easy way to extend the exact sequence $\widetilde{K}(X / A) \rightarrow \widetilde{K}(X) \rightarrow \widetilde{K}(A)$ to the left, using the following diagram, where $C$ and $S$ denote cone and suspension:


In the first row, each space is obtained from its predecessor by attaching a cone on the subspace two steps back in the sequence. The vertical maps are the quotient maps
obtained by collapsing the most recently attached cone to a point. In many cases the quotient map collapsing a contractible subspace to a point is a homotopy equivalence, hence induces an isomorphism on $\widetilde{K}$. This conclusion holds generally, in fact:

Lemma 2.5. If $A$ is contractible, the quotient map $q: X \rightarrow X / A$ induces a bijection $q^{*}: \operatorname{Vect}^{n}(X / A) \rightarrow \operatorname{Vect}^{n}(X)$ for all $n$.

Proof: A vector bundle $E \rightarrow X$ must be trivial over $A$ since $A$ is contractible. A trivialization $h$ gives a vector bundle $E / h \rightarrow X / A$ as in the proof of the previous proposition. We assert that the isomorphism class of $E / h$ does not depend on $h$. This can be seen as follows. Given two trivializations $h_{0}$ and $h_{1}$, by writing $h_{1}=$ $\left(h_{1} h_{0}^{-1}\right) h_{0}$ we see that $h_{0}$ and $h_{1}$ differ by an element of $g_{x} \in G L_{n}(\mathbb{C})$ over each point $x \in A$. The resulting map $g: A \rightarrow G L_{n}(\mathbb{C})$ is homotopic to a constant map $x \mapsto \alpha \in G L_{n}(\mathbb{C})$ since $A$ is contractible. Writing now $h_{1}=\left(h_{1} h_{0}^{-1} \alpha^{-1}\right)\left(\alpha h_{0}\right)$, we see that by composing $h_{0}$ with $\alpha$ in each fiber, which does not change $E / h_{0}$, we may assume that $\alpha$ is the identity. Then the homotopy from $g$ to the identity gives a homotopy $H$ from $h_{0}$ to $h_{1}$. In the same way that we constructed $E / h$ we construct a vector bundle $(E \times I) / H \rightarrow(X / A) \times I$ restricting to $E / h_{0}$ over one end and to $E / h_{1}$ over the other end, hence $E / h_{0} \approx E / h_{1}$.

Thus we have a well-defined map $\operatorname{Vect}^{n}(X) \rightarrow \operatorname{Vect}^{n}(X / A), E \mapsto E / h$. This is an inverse to $q^{*}$ since $q^{*}(E / h) \approx E$ as we noted in the preceding proposition, and for a bundle $E \rightarrow X$ / $A$ we have $q^{*}(E) / h \approx E$ for the evident trivialization $h$ of $q^{*}(E)$ over A

From this lemma and the preceding proposition it follows that we have a long exact sequence of $\widetilde{K}$ groups

$$
\cdots \rightarrow \widetilde{K}(S X) \rightarrow \widetilde{K}(S A) \rightarrow \widetilde{K}(X / A) \rightarrow \widetilde{K}(X) \rightarrow \widetilde{K}(A)
$$

For example, if $X=A \vee B$ then $X / A=B$ and the sequence breaks up into split short exact sequences, which implies that the map $\tilde{K}(X) \rightarrow \widetilde{K}(A) \oplus \widetilde{K}(B)$ obtained by restriction to $A$ and $B$ is an isomorphism.

We can use this exact sequence to obtain a reduced version of the external product, a ring homomorphism $\widetilde{K}(X) \otimes \widetilde{K}(Y) \rightarrow \widetilde{K}(X \wedge Y)$ where $X \wedge Y=X \times Y / X \vee Y$ and $X \vee Y=X \times\left\{y_{0}\right\} \cup\left\{x_{0}\right\} \times Y \subset X \times Y$ for chosen basepoints $x_{0} \in X$ and $y_{0} \in Y$. The space $X \wedge Y$ is called the smash product of $X$ and $Y$. To define the reduced product, consider the long exact sequence for the pair $(X \times Y, X \vee Y)$ :


The second of the two vertical isomorphisms here was noted earlier, and the first vertical isomorphism arises in similar fashion using Lemma 2.5 since $S X \vee S Y$ is
obtained from $S(X \vee Y)$ by collapsing a line segment to a point. The last horizontal map in the sequence is a split surjection, with splitting $\tilde{K}(X) \oplus \tilde{K}(Y) \rightarrow \tilde{K}(X \times Y)$, $(a, b) \mapsto p_{1}^{*}(a)+p_{2}^{*}(b)$ where $p_{1}$ and $p_{2}$ are the projections of $X \times Y$ onto $X$ and $Y$. Similarly, the first map splits via $\left(S p_{1}\right)^{*}+\left(S p_{2}\right)^{*}$. So we get a splitting $\tilde{K}(X \times Y) \approx$ $\widetilde{K}(X \wedge Y) \oplus \tilde{K}(X) \oplus \widetilde{K}(Y)$.

For $a \in \tilde{K}(X)=\operatorname{Ker}\left(K(X) \rightarrow K\left(x_{0}\right)\right)$ and $b \in \tilde{K}(Y)=\operatorname{Ker}\left(K(Y) \rightarrow K\left(y_{0}\right)\right)$ the external product $a * b=p_{1}^{*}(a) p_{2}^{*}(b) \in K(X \times Y)$ has $p_{1}^{*}(a)$ restricting to zero in $K(Y)$ and $p_{2}^{*}(b)$ restricting to zero in $K(X)$, so $p_{1}^{*}(a) p_{2}^{*}(b)$ restricts to zero in both $K(X)$ and $K(Y)$, hence in $K(X \vee Y)$. In particular, $a * b$ lies in $\widetilde{K}(X \times Y)$, and from the short exact sequence above, $a * b$ pulls back to a unique element of $\widetilde{K}(X \wedge Y)$. This defines the reduced external product $\widetilde{K}(X) \otimes \widetilde{K}(Y) \rightarrow \widetilde{K}(X \wedge Y)$. It is essentially a restriction of the unreduced external product, as shown in the diagram below, so the reduced external product is also a ring homomorphism, and we shall use the same notation $a * b$ for both reduced and unreduced external product, leaving the reader to determine from context which is meant.


Since $S^{n} \wedge X$ is the $n$-fold iterated reduced suspension $\Sigma^{n} X$, which is a quotient of the ordinary $n$-fold suspension $S^{n} X$ obtained by collapsing an $n$-disk in $S^{n} X$ to a point, the quotient map $S^{n} X \rightarrow S^{n} \wedge X$ induces an isomorphism on $\widetilde{K}$ by Lemma 2.5. Then the reduced external product gives rise to a homomorphism

$$
\beta: \tilde{K}(X) \rightarrow \tilde{K}\left(S^{2} X\right), \quad \beta(a)=(H-1) * a
$$

where $H$ is the canonical line bundle over $S^{2}=\mathbb{C} P^{1}$. The version of Bott Periodicity for reduced K-theory states that this is an isomorphism. This is equivalent to the unreduced version by the preceding diagram.

As we saw earlier, a pair ( $X, A$ ) of compact Hausdorff spaces gives rise to an exact sequence of $\tilde{K}$ groups, the first row in the following diagram:


If we set $\widetilde{K}^{-n}(X)=\widetilde{K}\left(S^{n} X\right)$ and $\widetilde{K}^{-n}(X, A)=\widetilde{K}\left(S^{n}(X / A)\right)$, this sequence can be written as in the second row. Negative indices are chosen here so that the 'coboundary' maps in this sequence increase dimension, as in ordinary cohomology. The lower left corner of the diagram containing the Bott periodicity isomorphisms $\beta$ commutes since external tensor product with $H-1$ commutes with maps between spaces. So the
long exact sequence in the second row can be rolled up into a six-term periodic exact sequence. It is reasonable to extend the definition of $\widetilde{K}^{n}$ to positive $n$ by setting $\widetilde{K}^{2 i}(X)=\widetilde{K}(X)$ and $\widetilde{K}^{2 i+1}(X)=\widetilde{K}(S X)$. Then the six-term exact sequence can be written


A product $\widetilde{K}^{i}(X) \otimes \widetilde{K}^{j}(Y) \rightarrow \widetilde{K}^{i+j}(X \wedge Y)$ is obtained from the external product $\widetilde{K}(X) \otimes \widetilde{K}(Y) \rightarrow \widetilde{K}(X \wedge Y)$ by replacing $X$ and $Y$ by $S^{i} X$ and $S^{j} Y$. If we define $\widetilde{K}^{*}(X)=$ $\widetilde{K}^{0}(X) \oplus \widetilde{K}^{1}(X)$, then this gives a product $\widetilde{K}^{*}(X) \otimes \widetilde{K}^{*}(Y) \rightarrow \widetilde{K}^{*}(X \wedge Y)$. The relative form of this is a product $\widetilde{K}^{*}(X, A) \otimes \widetilde{K}^{*}(Y, B) \rightarrow \widetilde{K}^{*}(X \times Y, X \times B \cup A \times Y)$, coming from the products $\tilde{K}\left(\Sigma^{i}(X / A)\right) \otimes \tilde{K}\left(\Sigma^{j}(Y / B)\right) \rightarrow \widetilde{K}\left(\Sigma^{i+j}(X / A \wedge Y / B)\right)$ using the natural identification $(X \times Y) /(X \times B \cup A \times Y)=X / A \wedge Y / B$.

If we compose the external product $\widetilde{K}^{*}(X) \otimes \widetilde{K}^{*}(X) \rightarrow \widetilde{K}^{*}(X \wedge X)$ with the map $\widetilde{K}^{*}(X \wedge X) \rightarrow \widetilde{K}^{*}(X)$ induced by the diagonal map $X \rightarrow X \wedge X, x \mapsto(x, x)$, then we obtain a multiplication on $\widetilde{K}^{*}(X)$ making it into a ring, and it is not hard to check that this extends the previously defined ring structure on $\widetilde{K}^{0}(X)$. The general relative form of this product on $\tilde{K}^{*}(X)$ is a product $\tilde{K}^{*}(X, A) \otimes \widetilde{K}^{*}(X, B) \rightarrow \widetilde{K}^{*}(X, A \cup B)$ which is induced by the relativized diagonal map $X /(A \cup B) \rightarrow X / A \wedge X / B$.
Example 2.6. Suppose that $X=A \cup B$ where $A$ and $B$ are compact contractible subspaces of $X$ containing the basepoint. Then the product $\widetilde{K}^{*}(X) \otimes \widetilde{K}^{*}(X) \rightarrow \widetilde{K}^{*}(X)$ is identically zero since it is equivalent to the composition

$$
\tilde{K}^{*}(X, A) \otimes \tilde{K}^{*}(X, B) \rightarrow \tilde{K}^{*}(X, A \cup B) \rightarrow \tilde{K}^{*}(X)
$$

and $\widetilde{K}^{*}(X, A \cup B)=0$ since $X=A \cup B$. For example if $X$ is a suspension we can take $A$ and $B$ to be its two cones, with a basepoint in their intersection. As a particular case we see that the product in $\widetilde{K}^{*}\left(S^{n}\right) \approx \mathbb{Z}$ is trivial for $n>0$. For $n=0$ the multiplication in $\widetilde{K}^{*}\left(S^{0}\right) \approx \mathbb{Z}$ is just the usual multiplication of integers since $\mathbb{R}^{m} \otimes \mathbb{R}^{n} \approx \mathbb{R}^{m n}$. This illustrates the necessity of the condition that $A$ and $B$ both contain the basepoint of $X$, since without this condition we could take $A$ and $B$ to be the two points of $S^{0}$.

More generally, if $X$ is the union of compact contractible subspaces $A_{1}, \cdots, A_{n}$ containing the basepoint then the $n$-fold product

$$
\widetilde{K}^{*}\left(X, A_{1}\right) \otimes \cdots \otimes \widetilde{K}^{*}\left(X, A_{n}\right) \rightarrow \widetilde{K}^{*}\left(X, A_{1} \cup \cdots \cup A_{n}\right)
$$

is trivial, so all $n$-fold products in $\widetilde{K}^{*}(X)$ are trivial. In particular all elements of $\tilde{K}^{*}(X)$ are nilpotent since their $n^{\text {th }}$ power is zero. This applies to all compact manifolds for example since they are covered by finitely many closed balls, and the condition that each $A_{i}$ contain the basepoint can be achieved by adjoining to each ball an arc to a fixed basepoint. In a similar fashion one can see that this observation applies to all finite cell complexes, by induction on the number of cells.

Whereas multiplication in $\widetilde{K}(X)$ is commutative, in $\widetilde{K}^{*}(X)$ this is only true up to sign:
$\|$ Proposition 2.7. $\alpha \beta=(-1)^{i j} \beta \alpha$ for $\alpha \in \widetilde{K}^{i}(X)$ and $\beta \in \widetilde{K}^{j}(X)$.
Proof: The product is the composition

$$
\widetilde{K}\left(S^{i} \wedge X\right) \otimes \widetilde{K}\left(S^{j} \wedge X\right) \rightarrow \widetilde{K}\left(S^{i} \wedge S^{j} \wedge X \wedge X\right) \rightarrow \widetilde{K}\left(S^{i} \wedge S^{j} \wedge X\right)
$$

where the first map is external product and the second is induced by the diagonal map on the $X$ factors. Replacing the product $\alpha \beta$ by the product $\beta \alpha$ amounts to switching the two factors in the first term $\widetilde{K}\left(S^{i} \wedge X\right) \otimes \widetilde{K}\left(S^{j} \wedge X\right)$, and this corresponds to switching the $S^{i}$ and $S^{j}$ factors in the third term $\widetilde{K}\left(S^{i} \wedge S^{j} \wedge X\right)$. Viewing $S^{i} \wedge S^{j}$ as the smash product of $i+j$ copies of $S^{1}$, then switching $S^{i}$ and $S^{j}$ in $S^{i} \wedge S^{j}$ is a product of $i j$ transpositions of adjacent factors. Transposing the two factors of $S^{1} \wedge S^{1}$ is equivalent to reflection of $S^{2}$ across an equator. Thus it suffices to see that switching the two ends of a suspension $S Y$ induces multiplication by -1 in $\widetilde{K}(S Y)$. If we view $\widetilde{K}(S Y)$ as $\langle Y, U\rangle$, then switching ends of $S Y$ corresponds to the map $U \rightarrow U$ sending a matrix to its inverse. We noted in the proof of Proposition 2.2 that the group operation in $K(S Y)$ is the same as the operation induced by the product in $U$, so the result follows.

Proposition 2.8. The exact sequence at the right is an exact sequence of $\widetilde{K}^{*}(X)$-modules, with the maps homomorphisms of $\widetilde{K}^{*}(X)$-modules.


The $\widetilde{K}^{*}(X)$-module structure on $\widetilde{K}^{*}(A)$ is defined by $\xi \cdot \alpha=i^{*}(\xi) \alpha$ where $i$ is the inclusion $A \hookrightarrow X$ and the product on the right side of the equation is multiplication in the ring $\widetilde{K}^{*}(A)$. To define the module structure on $\widetilde{K}^{*}(X, A)$, observe that the diagonal map $X \rightarrow X \wedge X$ induces a well-defined quotient map $X / A \rightarrow X \wedge X / A$, and this leads to a product $\widetilde{K}^{*}(X) \otimes \widetilde{K}^{*}(X, A) \rightarrow \widetilde{K}^{*}(X, A)$.

Proof: To see that the maps in the exact sequence are module homomorphisms we look at the diagram

where the vertical maps between the first two rows are external product with a fixed element of $\tilde{K}\left(S^{i} X\right)$ and the vertical maps between the second and third rows are induced by diagonal maps. What we must show is that the diagram commutes. For the upper two rows this follows from naturality of external product since the horizontal
maps are induced by maps between spaces. The lower two rows are induced from suspensions of maps between spaces,

so it suffices to show this diagram commutes up to homotopy. This is obvious for the middle and right squares. The left square can be rewritten

where the horizontal maps collapse the copy of $X$ in $X \cup C A$ to a point, the left vertical map sends $(a, s) \in S A$ to $(a, a, s) \in X \wedge S A$, and the right vertical map sends $x \in X$ to $(x, x) \in X \cup C A$ and $(a, s) \in C A$ to $(a, a, s) \in X \wedge C A$. Commutativity is then obvious.

It is often convenient to have an unreduced version of the groups $\widetilde{K}^{n}(X)$, and this can easily be done by the simple device of defining $K^{n}(X)$ to be $\widetilde{K}^{n}\left(X_{+}\right)$where $X_{+}$is $X$ with a disjoint basepoint labeled ' + ' adjoined. For $n=0$ this is consistent with the relation between $K$ and $\tilde{K}$ since $K^{0}(X)=\widetilde{K}^{0}\left(X_{+}\right)=\widetilde{K}\left(X_{+}\right)=\operatorname{Ker}\left(K\left(X_{+}\right) \rightarrow K(+)\right)=$ $K(X)$. For $n=1$ this definition yields $K^{1}(X)=\widetilde{K}^{1}(X)$ since $S\left(X_{+}\right) \simeq S X \vee S^{1}$ and $\widetilde{K}\left(S X \vee S^{1}\right) \approx \widetilde{K}(S X) \oplus \widetilde{K}\left(S^{1}\right) \approx \widetilde{K}(S X)$ since $\widetilde{K}\left(S^{1}\right)=0$. For a pair $(X, A)$ with $A \neq \varnothing$ one defines $K^{n}(X, A)=\widetilde{K}^{n}(X, A)$, and then the six-term long exact sequence is valid also for unreduced groups. When $A=\varnothing$ this remains valid if we interpret $X / \varnothing$ as $X_{+}$.

Since $X_{+} \wedge Y_{+}=(X \times Y)_{+}$, the external product $\widetilde{K}^{*}(X) \otimes \widetilde{K}^{*}(Y) \rightarrow \widetilde{K}^{*}(X \wedge Y)$ gives a product $K^{*}(X) \otimes K^{*}(Y) \rightarrow K^{*}(X \times Y)$. Taking $X=Y$ and composing with the map $K^{*}(X \times X) \rightarrow K^{*}(X)$ induced by the diagonal map $X \rightarrow X \times X, x \mapsto(x, x)$, we get a product $K^{*}(X) \otimes K^{*}(X) \rightarrow K^{*}(X)$ which makes $K^{*}(X)$ into a ring.

There is a relative product $K^{i}(X, A) \otimes K^{j}(Y, B) \rightarrow K^{i+j}(X \times Y, X \times B \cup A \times Y)$ defined as the external product $\widetilde{K}\left(\Sigma^{i}(X / A)\right) \otimes \widetilde{K}\left(\Sigma^{j}(Y / B)\right) \longrightarrow \widetilde{K}\left(\Sigma^{i+j}(X / A \wedge Y / B)\right)$, using the natural identification $(X \times Y) /(X \times B \cup A \times Y)=X / A \wedge Y / B$. This works when $A=\varnothing$ since we interpret $X / \varnothing$ as $X_{+}$, and similarly if $Y=\varnothing$. Via the diagonal map we obtain also a product $K^{i}(X, A) \otimes K^{j}(X, B) \rightarrow K^{i+j}(X, A \cup B)$.

With these definitions the preceding two propositions are valid also for unreduced K-groups.

## 2. Bott Periodicity

The form of the Bott periodicity theorem we shall prove is the assertion that the external product map $\mu: K(X) \otimes K\left(S^{2}\right) \rightarrow K\left(X \times S^{2}\right)$ is an isomorphism for all compact Hausdorff spaces $X$. The present section will be devoted entirely to the proof of this theorem. Nothing in the proof will be used elsewhere in the book except in the proof of Bott periodicity for real K-theory in Chapter 4, so the reader who wishes to defer a careful reading of the proof may skip ahead to §2.3 without any loss of continuity.

The main work in proving the theorem will be to prove the surjectivity of $\mu$. Injectivity will then be proved by a closer examination of the surjectivity argument.

## Clutching Functions

From the classification of vector bundles over spheres in $\S 1.2$ we know that vector bundles over $S^{2}$ correspond exactly to homotopy classes of maps $S^{1} \rightarrow G L_{n}(\mathbb{C})$, which we called clutching functions. To prove the Bott periodicity theorem we will generalize this construction, creating vector bundles over $X \times S^{2}$ by gluing together two vector bundles over $X \times D^{2}$ by means of a generalized clutching function.

We begin by describing this more general clutching construction. Given a vector bundle $p: E \rightarrow X$, let $f: E \times S^{1} \rightarrow E \times S^{1}$ be an automorphism of the product vector bundle $p \times \mathbb{1}: E \times S^{1} \rightarrow X \times S^{1}$. Thus for each $x \in X$ and $z \in S^{1}, f$ specifies an isomorphism $f(x, z): p^{-1}(x) \rightarrow p^{-1}(x)$. From $E$ and $f$ we construct a vector bundle over $X \times S^{2}$ by taking two copies of $E \times D^{2}$ and identifying the subspaces $E \times S^{1}$ via $f$. We write this bundle as $[E, f]$, and call $f$ a clutching function for $[E, f]$. If $f_{t}: E \times S^{1} \rightarrow E \times S^{1}$ is a homotopy of clutching functions, then $\left[E, f_{0}\right] \approx\left[E, f_{1}\right]$ since from the homotopy $f_{t}$ we can construct a vector bundle over $X \times S^{2} \times I$ restricting to $\left[E, f_{0}\right.$ ] and $\left[E, f_{1}\right]$ over $X \times S^{2} \times\{0\}$ and $X \times S^{2} \times\{1\}$. From the definitions it is evident that $\left[E_{1}, f_{1}\right] \oplus\left[E_{2}, f_{2}\right] \approx\left[E_{1} \oplus E_{2}, f_{1} \oplus f_{2}\right]$.

Here are some examples of bundles built using clutching functions:

1. [ $E, \mathbb{1}$ ] is the external product $E * 1=\mu(E, 1)$, or equivalently the pullback of $E$ via the projection $X \times S^{2} \rightarrow X$.
2. Taking $X$ to be a point, then we showed in Example 1.12 that $[1, z] \approx H$ where ' 1 ' is the trivial line bundle over $X$, ' $z$ ' means scalar multiplication by $z \in S^{1} \subset \mathbb{C}$, and $H$ is the canonical line bundle over $S^{2}=\mathbb{C} \mathrm{P}^{1}$. More generally we have $\left[1, z^{n}\right] \approx H^{n}$, the $n$-fold tensor product of $H$ with itself. The formula $\left[1, z^{n}\right] \approx H^{n}$ holds also for negative $n$ if we define $H^{-1}=\left[1, z^{-1}\right]$, which is justified by the fact that $H \otimes H^{-1} \approx 1$.
3. $\left[E, z^{n}\right] \approx E * H^{n}=\mu\left(E, H^{n}\right)$ for $n \in \mathbb{Z}$.
4. Generalizing this, $\left[E, z^{n} f\right] \approx[E, f] \otimes \hat{H}^{n}$ where $\hat{H}^{n}$ denotes the pullback of $H^{n}$ via the projection $X \times S^{2} \rightarrow S^{2}$.

Every vector bundle $E^{\prime} \rightarrow X \times S^{2}$ is isomorphic to $[E, f]$ for some $E$ and $f$. To see this, let the unit circle $S^{1} \subset \mathbb{C} \cup\{\infty\}=S^{2}$ decompose $S^{2}$ into the two disks $D_{0}$
and $D_{\infty}$, and let $E_{\alpha}$ for $\alpha=0, \infty$ be the restriction of $E^{\prime}$ over $X \times D_{\alpha}$, with $E$ the restriction of $E^{\prime}$ over $X \times\{1\}$. The projection $X \times D_{\alpha} \rightarrow X \times\{1\}$ is homotopic to the identity map of $X \times D_{\alpha}$, so the bundle $E_{\alpha}$ is isomorphic to the pullback of $E$ by the projection, and this pullback is $E \times D_{\alpha}$, so we have an isomorphism $h_{\alpha}: E_{\alpha} \rightarrow E \times D_{\alpha}$. Then $f=h_{0} h_{\infty}^{-1}$ is a clutching function for $E^{\prime}$.

We may assume a clutching function $f$ is normalized to be the identity over $X \times\{1\}$ since we may normalize any isomorphism $h_{\alpha}: E_{\alpha} \rightarrow E \times D_{\alpha}$ by composing it over each $X \times\{z\}$ with the inverse of its restriction over $X \times\{1\}$. Any two choices of normalized $h_{\alpha}$ are homotopic through normalized $h_{\alpha}$ 's since they differ by a map $g_{\alpha}$ from $D_{\alpha}$ to the automorphisms of $E$, with $g_{\alpha}(1)=\mathbb{1}$, and such a $g_{\alpha}$ is homotopic to the constant map $\mathbb{1}$ by composing it with a deformation retraction of $D_{\alpha}$ to 1 . Thus any two choices $f_{0}$ and $f_{1}$ of normalized clutching functions are joined by a homotopy of normalized clutching functions $f_{t}$.

The strategy of the proof will be to reduce from arbitrary clutching functions to successively simpler clutching functions. The first step is to reduce to Laurent polynomial clutching functions, which have the form $\ell(x, z)=\sum_{|i| \leq n} a_{i}(x) z^{i}$ where $a_{i}: E \rightarrow E$ restricts to a linear transformation $a_{i}(x)$ in each fiber $p^{-1}(x)$. We call such an $a_{i}$ an endomorphism of $E$ since the linear transformations $a_{i}(x)$ need not be invertible, though their linear combination $\sum_{i} a_{i}(x) z^{i}$ is since clutching functions are automorphisms.

Proposition 2.9. Every vector bundle $[E, f]$ is isomorphic to $[E, \ell]$ for some Laurent polynomial clutching function $\ell$. Laurent polynomial clutching functions $\ell_{0}$ and $\ell_{1}$ which are homotopic through clutching functions are homotopic by a Laurent polynomial clutching function homotopy $\ell_{t}(x, z)=\sum_{i} a_{i}(x, t) z^{i}$.

Before beginning the proof we need a lemma. For a compact space $X$ we wish to approximate a continuous function $f: X \times S^{1} \rightarrow \mathbb{C}$ by Laurent polynomial functions $\sum_{|n| \leq N} a_{n}(x) z^{n}=\sum_{|n| \leq N} a_{n}(x) e^{i n \theta}$, where each $a_{n}$ is a continuous function $X \rightarrow \mathbb{C}$. Motivated by Fourier series, we set

$$
a_{n}(x)=\frac{1}{2 \pi} \int_{S^{1}} f(x, \theta) e^{-i n \theta} d \theta
$$

For positive real $r$ let $u(x, r, \theta)=\sum_{n \in \mathbb{Z}} a_{n}(x) r^{|n|} e^{i n \theta}$. For fixed $r<1$, this series converges absolutely and uniformly as $(x, \theta)$ ranges over $X \times S^{1}$, by comparison with the geometric series $\sum_{n} r^{n}$, since compactness of $X \times S^{1}$ implies that $|f(x, \theta)|$ is bounded and hence also $\left|a_{n}(x)\right|$. If we can show that $u(x, r, \theta)$ approaches $f(x, \theta)$ uniformly in $x$ and $\theta$ as $r$ goes to 1 , then sums of finitely many terms in the series for $u(x, r, \theta)$ with $r$ near 1 will give the desired approximations to $f$ by Laurent polynomial functions.
$\|$ Lemma 2.10. As $r \rightarrow 1, u(x, r, \theta) \rightarrow f(x, \theta)$ uniformly in $x$ and $\theta$.

Proof: For $r<1$ we have

$$
\begin{aligned}
u(x, r, \theta) & =\sum_{n=-\infty}^{\infty} \frac{1}{2 \pi} \int_{S^{1}} r^{|n|} e^{i n(\theta-t)} f(x, t) d t \\
& =\int_{S^{1}} \frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} r^{|n|} e^{i n(\theta-t)} f(x, t) d t
\end{aligned}
$$

where the order of summation and integration can be interchanged since the series in the latter formula converges uniformly, by comparison with the geometric series $\sum_{n} r^{n}$. Define the Poisson kernel

$$
P(r, \varphi)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} r^{|n|} e^{i n \varphi} \quad \text { for } 0 \leq r<1 \text { and } \varphi \in \mathbb{R}
$$

Then $u(x, r, \theta)=\int_{S^{1}} P(r, \theta-t) f(x, t) d t$. By summing the two geometric series for positive and negative $n$ in the formula for $P(r, \varphi)$, one computes that

$$
P(r, \varphi)=\frac{1}{2 \pi} \cdot \frac{1-r^{2}}{1-2 r \cos \varphi+r^{2}}
$$

Three basic facts about $P(r, \varphi)$ which we shall need are:
(a) As a function of $\varphi, P(r, \varphi)$ is even, of period $2 \pi$, and monotone decreasing on $[0, \pi]$, since the same is true of $\cos \varphi$ which appears in the denominator of $P(r, \varphi)$ with a minus sign. In particular we have $P(r, \varphi) \geq P(r, \pi)>0$ for all $r<1$.
(b) $\int_{S^{1}} P(r, \varphi) d \varphi=1$ for each $r<1$, as one sees by integrating the series for $P(r, \varphi)$ term by term.
(c) For fixed $\varphi \in(0, \pi), P(r, \varphi) \rightarrow 0$ as $r \rightarrow 1$ since the numerator of $P(r, \varphi)$ approaches 0 and the denominator approaches $2-2 \cos \varphi \neq 0$.
Now to show uniform convergence of $u(x, r, \theta)$ to $f(x, \theta)$ we first observe that, using (b), we have

$$
\begin{aligned}
|u(x, r, \theta)-f(x, \theta)| & =\left|\int_{S^{1}} P(r, \theta-t) f(x, t) d t-\int_{S^{1}} P(r, \theta-t) f(x, \theta) d t\right| \\
& \leq \int_{S^{1}} P(r, \theta-t)|f(x, t)-f(x, \theta)| d t
\end{aligned}
$$

Given $\varepsilon>0$, there exists a $\delta>0$ such that $|f(x, t)-f(x, \theta)|<\varepsilon$ for $|t-\theta|<\delta$ and all $x$, since $f$ is uniformly continuous on the compact space $X \times S^{1}$. Let $I_{\delta}$ denote the integral $\int P(r, \theta-t)|f(x, t)-f(x, \theta)| d t$ over the interval $|t-\theta| \leq \delta$ and let $I_{\delta}^{\prime}$ denote this integral over the rest of $S^{1}$. Then we have

$$
I_{\delta} \leq \int_{|t-\theta| \leq \delta} P(r, \theta-t) \varepsilon d t \leq \varepsilon \int_{S^{1}} P(r, \theta-t) d t=\varepsilon
$$

By (a) the maximum value of $P(r, \theta-t)$ on $|t-\theta| \geq \delta$ is $P(r, \delta)$. So

$$
I_{\delta}^{\prime} \leq P(r, \delta) \int_{S^{1}}|f(x, t)-f(x, \theta)| d t
$$

The integral here has a uniform bound for all $x$ and $\theta$ since $f$ is bounded. Thus by (c) we can make $I_{\delta}^{\prime} \leq \varepsilon$ by taking $r$ close enough to 1 . Therefore $|u(x, r, \theta)-f(x, \theta)| \leq$ $I_{\delta}+I_{\delta}^{\prime} \leq 2 \varepsilon$.

Proof of Proposition 2.9: Choosing a Hermitian inner product on $E$, the endomorphisms of $E \times S^{1}$ form a vector space $\operatorname{End}\left(E \times S^{1}\right)$ with a norm $\|\alpha\|=\sup _{|v|=1}|\alpha(v)|$. The triangle inequality holds for this norm, so balls in $\operatorname{End}\left(E \times S^{1}\right)$ are convex. The subspace $\operatorname{Aut}\left(E \times S^{1}\right)$ of automorphisms is open in the topology defined by this norm since it is the preimage of $(0, \infty)$ under the continuous map $\operatorname{End}\left(E \times S^{1}\right) \rightarrow[0, \infty)$, $\alpha \mapsto \inf _{(x, z) \in X \times S^{1}}|\operatorname{det}(\alpha(x, z))|$. Thus to prove the first statement of the lemma it will suffice to show that Laurent polynomials are dense in End $\left(E \times S^{1}\right)$, since a sufficiently close Laurent polynomial approximation $\ell$ to $f$ will then be homotopic to $f$ via the linear homotopy $t \ell+(1-t) f$ through clutching functions. The second statement follows similarly by approximating a homotopy from $\ell_{0}$ to $\ell_{1}$, viewed as an automorphism of $E \times S^{1} \times I$, by a Laurent polynomial homotopy $\ell_{t}^{\prime}$, then combining this with linear homotopies from $\ell_{0}$ to $\ell_{0}^{\prime}$ and $\ell_{1}$ to $\ell_{1}^{\prime}$ to obtain a homotopy $\ell_{t}$ from $\ell_{0}$ to $\ell_{1}$.

To show that every $f \in \operatorname{End}\left(E \times S^{1}\right)$ can be approximated by Laurent polynomial endomorphisms, first choose open sets $U_{i}$ covering $X$ together with isomorphisms $h_{i}: p^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{C}^{n_{i}}$. We may assume $h_{i}$ takes the chosen inner product in $p^{-1}\left(U_{i}\right)$ to the standard inner product in $\mathbb{C}^{n_{i}}$, by applying the Gram-Schmidt process to $h_{i}^{-1}$ of the standard basis vectors. Let $\left\{\varphi_{i}\right\}$ be a partition of unity subordinate to $\left\{U_{i}\right\}$ and let $X_{i}$ be the support of $\varphi_{i}$, a compact set in $U_{i}$. Via $h_{i}$, the linear maps $f(x, z)$ for $x \in X_{i}$ can be viewed as matrices. The entries of these matrices define functions $X_{i} \times S^{1} \rightarrow \mathbb{C}$. By the lemma we can find Laurent polynomial matrices $\ell_{i}(x, z)$ whose entries uniformly approximate those of $f(x, z)$ for $x \in X_{i}$. It follows easily that $\ell_{i}$ approximates $f$ in the $\|\cdot\|$ norm. From the Laurent polynomial approximations $\ell_{i}$ over $X_{i}$ we form the convex linear combination $\ell=\sum_{i} \varphi_{i} \ell_{i}$, a Laurent polynomial approximating $f$ over all of $X \times S^{1}$.

A Laurent polynomial clutching function can be written $\ell=z^{-m} q$ for a polynomial clutching function $q$, and then we have $[E, \ell] \approx[E, q] \otimes \hat{H}^{-m}$. The next step is to reduce polynomial clutching functions to linear clutching functions.

Proposition 2.11. If $q$ is a polynomial clutching function of degree at most $n$, then $\| E, q] \oplus[n E, \mathbb{1}] \approx\left[(n+1) E, L^{n} q\right]$ for a linear clutching function $L^{n} q$.

Proof: Let $q(x, z)=a_{n}(x) z^{n}+\cdots+a_{0}(x)$. Consider the matrices

$$
\left(\begin{array}{cccccc}
1 & -z & 0 & \cdots & 0 & 0 \\
0 & 1 & -z & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -z \\
a_{n} & a_{n-1} & a_{n-2} & \cdots & a_{1} & a_{0}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & q
\end{array}\right)
$$

which define endomorphisms of $(n+1) E$. We can pass from the first matrix to the second by a sequence of elementary row and column operations in the following way. In the first matrix, add $z$ times the first column to the second column, then $z$ times the second column to the third, and so on. This produces all 0 's above the diagonal, and the polynomial $q$ in the lower right corner. Then for each $i \leq n$, subtract the appropriate multiple of the $i^{\text {th }}$ row from the last row.

The second matrix is a clutching function for $[n E, \mathbb{1}] \oplus[E, q]$. The first matrix has the same determinant as the second, hence is also invertible and is therefore an automorphism of $(n+1) E$ for each $z \in S^{1}$, determining a clutching function which we denote by $L^{n} q$. Since $L^{n} q$ has the form $A(x) z+B(x)$, it is a linear clutching function. The two displayed matrices define homotopic clutching functions since the elementary row and column operations can be achieved by continuous one-parameter families of such operations. For example the first operation can be achieved by adding $t z$ times the first column to the second, with $t$ ranging from 0 to 1 . Since homotopic clutching functions produce isomorphic bundles, we obtain an isomorphism $[E, q] \oplus[n E, \mathbb{1}] \approx$ $\left[(n+1) E, L^{n} q\right]$.

## Linear Clutching Functions

For linear clutching functions $a(x) z+b(x)$ we have the following key fact:
Proposition 2.12. Given a bundle $[E, a(x) z+b(x)]$, there is a splitting $E \approx E_{+} \oplus E_{-}$ with $[E, a(x) z+b(x)] \approx\left[E_{+}, \mathbb{1}\right] \oplus\left[E_{-}, z\right]$.

Proof: The first step is to reduce to the case that $a(x)$ is the identity for all $x$. Consider the expression:

$$
\begin{equation*}
(1+t z)\left[a(x) \frac{z+t}{1+t z}+b(x)\right]=[a(x)+t b(x)] z+t a(x)+b(x) \tag{*}
\end{equation*}
$$

When $t=0$ this equals $a(x) z+b(x)$. For $0 \leq t<1$, (*) defines an invertible linear transformation since the left-hand side is obtained from $a(x) z+b(x)$ by first applying the substitution $z \mapsto(z+t) /(1+t z)$ which takes $S^{1}$ to itself (because if $|z|=1$ then $|(z+t) /(1+t z)|=|\bar{z}(z+t) /(1+t z)|=|(1+t \bar{z}) /(1+t z)|=|\bar{w} / w|=1)$, and then multiplying by the nonzero scalar $1+t z$. Therefore $(*)$ defines a homotopy of clutching functions as $t$ goes from 0 to $t_{0}<1$. In the right-hand side of $(*)$ the
term $a(x)+t b(x)$ is invertible for $t=1$ since it is the restriction of $a(x) z+b(x)$ to $z=1$. Therefore $a(x)+t b(x)$ is invertible for $t=t_{0}$ near 1 , as the continuous function $t \mapsto \inf _{x \in X}|\operatorname{det}[a(x)+t b(x)]|$ is nonzero for $t=1$, hence also for $t$ near 1. Now we use the simple fact that $[E, f g] \approx[E, f]$ for any isomorphism $g: E \rightarrow E$. This allows us to replace the clutching function on the right-hand side of $(*)$ by the clutching function $z+\left[t_{0} a(x)+b(x)\right]\left[a(x)+t_{0} b(x)\right]^{-1}$, reducing to the case of clutching functions of the form $z+b(x)$.

Since $z+b(x)$ is invertible for all $x, b(x)$ has no eigenvalues on the unit circle $S^{1}$.

Lemma 2.13. Let $b: E \rightarrow E$ be an endomorphism having no eigenvalues on the unit circle $S^{1}$. Then there are unique subbundles $E_{+}$and $E_{-}$of $E$ such that:
(a) $E=E_{+} \oplus E_{-}$.
(b) $b\left(E_{ \pm}\right) \subset E_{ \pm}$.
(c) The eigenvalues of $b \mid E_{+}$all lie outside $S^{1}$ and the eigenvalues of $b \mid E_{-}$all lie inside $S^{1}$.

Proof: Consider first the algebraic situation of a linear transformation $T: V \rightarrow V$ with characteristic polynomial $q(t)$. Assuming $q(t)$ has no roots on $S^{1}$, we may factor $q(t)$ in $\mathbb{C}[t]$ as $q_{+}(t) q_{-}(t)$ where $q_{+}(t)$ has all its roots outside $S^{1}$ and $q_{-}(t)$ has all its roots inside $S^{1}$. Let $V_{ \pm}$be the kernel of $q_{ \pm}(T): V \rightarrow V$. Since $q_{+}$and $q_{-}$are relatively prime in $\mathbb{C}[t]$, there are polynomials $r$ and $s$ with $r q_{+}+s q_{-}=1$. From $q_{+}(T) q_{-}(T)=$ $q(T)=0$, we have $\operatorname{Im} q_{-}(T) \subset \operatorname{Ker} q_{+}(T)$, and the opposite inclusion follows from $r(T) q_{+}(T)+q_{-}(T) s(T)=\mathbb{1}$. Thus $\operatorname{Ker} q_{+}(T)=\operatorname{Im} q_{-}(T)$, and similarly $\operatorname{Ker} q_{-}(T)=$ $\operatorname{Im} q_{+}(T)$. From $q_{+}(T) r(T)+q_{-}(T) s(T)=\mathbb{1}$ we see that $\operatorname{Im} q_{+}(T)+\operatorname{Im} q_{-}(T)=V$, and from $r(T) q_{+}(T)+s(T) q_{-}(T)=\mathbb{1}$ we deduce that $\operatorname{Ker} q_{+}(T) \cap \operatorname{Ker} q_{-}(T)=0$. Hence $V=V_{+} \oplus V_{-}$. We have $T\left(V_{ \pm}\right) \subset V_{ \pm}$since $q_{ \pm}(T)(v)=0$ implies $q_{ \pm}(T)(T(v))=$ $T\left(q_{ \pm}(T)(v)\right)=0$. All eigenvalues of $T \mid V_{ \pm}$are roots of $q_{ \pm}$since $q_{ \pm}(T)=0$ on $V_{ \pm}$. Thus conditions (a)-(c) hold for $V_{+}$and $V_{-}$.

To see the uniqueness of $V_{+}$and $V_{-}$satisfying (a)-(c), let $q_{ \pm}^{\prime}$ be the characteristic polynomial of $T \mid V_{ \pm}$, so $q=q_{+}^{\prime} q_{-}^{\prime}$. All the linear factors of $q_{ \pm}^{\prime}$ must be factors of $q_{ \pm}$by condition (c), so the factorizations $q=q_{+}^{\prime} q_{-}^{\prime}$ and $q=q_{+} q_{-}$must coincide up to scalar factors. Since $q_{ \pm}^{\prime}(T)$ is identically zero on $V_{ \pm}$, so must be $q_{ \pm}(T)$, hence $V_{ \pm} \subset \operatorname{Ker} q_{ \pm}(T)$. Since $V=V_{+} \oplus V_{-}$and $V=\operatorname{Ker} q_{+}(T) \oplus \operatorname{Ker} q_{-}(T)$, we must have $V_{ \pm}=\operatorname{Ker} q_{ \pm}(T)$. This establishes the uniqueness of $V_{ \pm}$.

As $T$ varies continuously through linear transformations without eigenvalues on $S^{1}$, its characteristic polynomial $q(t)$ varies continuously through polynomials without roots in $S^{1}$. In this situation we assert that the factors $q_{ \pm}$of $q$ vary continuously with $q$, assuming that $q, q_{+}$, and $q_{-}$are normalized to be monic polynomials. To see this we shall use the fact that for any circle $C$ in $\mathbb{C}$ disjoint from the roots of $q$, the number of roots of $q$ inside $C$, counted with multiplicity, equals the degree of
the map $\gamma: C \rightarrow S^{1}, \gamma(z)=q(z) /|q(z)|$. To prove this fact it suffices to consider the case of a small circle $C$ about a root $z=a$ of multiplicity $m$, so $q(t)=p(t)(t-a)^{m}$ with $p(a) \neq 0$. The homotopy

$$
\gamma_{s}(z)=\frac{p(s a+(1-s) z)(z-a)^{m}}{\left|p(s a+(1-s) z)(z-a)^{m}\right|}
$$

gives a reduction to the case $(t-a)^{m}$, where it is clear that the degree is $m$.
Thus for a small circle $C$ about a root $z=a$ of $q$ of multiplicity $m$, small perturbations of $q$ produce polynomials $q^{\prime}$ which also have $m$ roots $a_{1}, \cdots, a_{m}$ inside $C$, so the factor $(z-a)^{m}$ of $q$ becomes a factor $\left(z-a_{1}\right) \cdots\left(z-a_{m}\right)$ of the nearby $q^{\prime}$. Since the $a_{i}$ 's are near $a$, these factors of $q$ and $q^{\prime}$ are close, and so $q_{ \pm}^{\prime}$ is close to $q_{ \pm}$.

Next we observe that as $T$ varies continuously through transformations without eigenvalues in $S^{1}$, the splitting $V=V_{+} \oplus V_{-}$also varies continuously. To see this, recall that $V_{+}=\operatorname{Im} q_{-}(T)$ and $V_{-}=\operatorname{Im} q_{+}(T)$. Choose a basis $v_{1}, \cdots, v_{n}$ for $V$ such that $q_{-}(T)\left(v_{1}\right), \cdots, q_{-}(T)\left(v_{k}\right)$ is a basis for $V_{+}$and $q_{+}(T)\left(v_{k+1}\right), \cdots, q_{+}(T)\left(v_{n}\right)$ is a basis for $V_{-}$. For nearby $T$ these vectors vary continuously, hence remain independent. Thus the splitting $V=\operatorname{Im} q_{-}(T) \oplus \operatorname{Im} q_{+}(T)$ continues to hold for nearby $T$, and so the splitting $V=V_{+} \oplus V_{-}$varies continuously with $T$.

It follows that the union $E_{ \pm}$of the subspaces $V_{ \pm}$in all the fibers $V$ of $E$ is a subbundle, and so the proof of the lemma is complete.

To finish the proof of Proposition 2.12, note that the lemma gives a splitting $[E, z+b(x)] \approx\left[E_{+}, z+b_{+}(x)\right] \oplus\left[E_{-}, z+b_{-}(x)\right]$ where $b_{+}$and $b_{-}$are the restrictions of $b$. Since $b_{+}(x)$ has all its eigenvalues outside $S^{1}$, the formula $t z+b_{+}(x)$ for $0 \leq t \leq 1$ defines a homotopy of clutching functions from $z+b_{+}(x)$ to $b_{+}(x)$. Hence $\left[E_{+}, z+b_{+}(x)\right] \approx\left[E_{+}, b_{+}(x)\right] \approx\left[E_{+}, \mathbb{1}\right]$. Similarly, $z+t b_{-}(x)$ defines a homotopy of clutching functions from $z+b_{-}(x)$ to $z$, so $\left[E_{-}, z+b_{-}(x)\right] \approx\left[E_{-}, z\right]$.

For future reference we note that the splitting $[E, a z+b] \approx\left[E_{+}, \mathbb{1}\right] \oplus\left[E_{-}, z\right]$ constructed in the proof of Proposition 2.12 preserves direct sums, in the sense that the splitting for a sum $\left[E_{1} \oplus E_{2},\left(a_{1} z+b_{1}\right) \oplus\left(a_{2} z+b_{2}\right)\right]$ has $\left(E_{1} \oplus E_{2}\right)_{ \pm}=\left(E_{1}\right)_{ \pm} \oplus\left(E_{2}\right)_{ \pm}$. This is because the first step of reducing to the case $a=\mathbb{1}$ clearly respects sums, and the uniqueness of the $\pm$-splitting in Lemma 2.13 guarantees that it preserves sums.

## Conclusion of the Proof

The preceding propositions imply that in $K\left(X \times S^{2}\right)$ we have

$$
\begin{aligned}
{[E, f] } & =\left[E, z^{-m} q\right] \\
& =[E, q] \otimes \hat{H}^{-m} \\
& =\left[(n+1) E, L^{n} q\right] \otimes \hat{H}^{-m}-[n E, \mathbb{1}] \otimes \hat{H}^{-m} \\
& =\left[((n+1) E)_{+}, \mathbb{1}\right] \otimes \hat{H}^{-m}+\left[((n+1) E)_{-}, z\right] \otimes \hat{H}^{-m}-[n E, \mathbb{1}] \otimes \hat{H}^{-m} \\
& =((n+1) E)_{+} \otimes H^{-m}+((n+1) E)_{-} \otimes H^{1-m}-n E \otimes H^{-m}
\end{aligned}
$$

This last expression is in the image of $\mu: K(X) \otimes K\left(S^{2}\right) \rightarrow K\left(X \times S^{2}\right)$. Since every vector bundle over $X \times S^{2}$ has the form [ $\left.E, f\right]$, it follows that $\mu$ is surjective.

To show $\mu$ is injective we shall construct $v: K\left(X \times S^{2}\right) \rightarrow K(X) \otimes K\left(S^{2}\right)$ such that $v \mu=\mathbb{1}$. The idea will be to define $v([E, f])$ as some linear combination of terms $E \otimes H^{k}$ and $((n+1) E)_{ \pm} \otimes H^{k}$ which is independent of all choices.

To investigate the dependence of the terms in the formula for $[E, f]$ displayed above on $m$ and $n$ we first derive the following two formulas, where $\operatorname{deg} q \leq n$ :
(1) $\left[(n+2) E, L^{n+1} q\right] \approx\left[(n+1) E, L^{n} q\right] \oplus[E, \mathbb{1}]$
(2) $\left[(n+2) E, L^{n+1}(z q)\right] \approx\left[(n+1) E, L^{n} q\right] \oplus[E, z]$

The matrix representations of $L^{n+1} q$ and $L^{n+1}(z q)$ are:

$$
\left(\begin{array}{ccccc}
1 & -z & 0 & \cdots & 0 \\
0 & 1 & -z & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & 1 & -z \\
0 & a_{n} & a_{n-1} & \cdots & a_{0}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccccc}
1 & -z & 0 & \cdots & 0 & 0 \\
0 & 1 & -z & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -z \\
a_{n} & a_{n-1} & a_{n-2} & \cdots & a_{0} & 0
\end{array}\right)
$$

In the first matrix we can add $z$ times the first column to the second column to eliminate the $-z$ in the first row, and then the first row and column give the summand $[E, \mathbb{1}]$ while the rest of the matrix gives $\left[(n+1) E, L^{n} q\right]$. This proves (1). Similarly, in the second matrix we add $z^{-1}$ times the last column to the next-to-last column to make the $-z$ in the last column have all zeros in its row and column, which gives the splitting in (2) since $[E,-z] \approx[E, z]$, the clutching function $-z$ being the composition of the clutching function $z$ with the automorphism -1 of $E$.

In view of the appearance of the correction terms $[E, \mathbb{1}]$ and $[E, z]$ in (1) and (2), it will be useful to know the ' $\pm$ ' splittings for these two bundles:
(3) For $[E, \mathbb{1}]$ the summand $E_{-}$is 0 and $E_{+}=E$.
(4) For $[E, z]$ the summand $E_{+}$is 0 and $E_{-}=E$.

Statement (4) is obvious from the definitions since the clutching function $z$ is already in the form $z+b(x)$ with $b(x)=0$, so 0 is the only eigenvalue of $b(x)$ and hence $E_{+}=0$. To obtain (3) we first apply the procedure at the beginning of the proof of Proposition 2.12 which replaces a clutching function $a(x) z+b(x)$ by the clutching function $z+\left[t_{0} a(x)+b(x)\right]\left[a(x)+t_{0} b(x)\right]^{-1}$ with $0<t_{0}<1$. Specializing to the case $a(x) z+b(x)=\mathbb{1}$ this yields $z+t_{0}^{-1} \mathbb{1}$. Since $t_{0}^{-1} \mathbb{1}$ has only the one eigenvalue $t_{0}^{-1}>1$, we have $E_{-}=0$.

Formulas (1) and (3) give $((n+2) E)_{-} \approx((n+1) E)_{-}$, using the fact that the $\pm$-splitting preserves direct sums. So the 'minus' summand is independent of $n$.

Suppose we define

$$
v\left(\left[E, z^{-m} q\right]\right)=((n+1) E)_{-} \otimes(H-1)+E \otimes H^{-m} \in K(X) \otimes K\left(S^{2}\right)
$$

for $n \geq \operatorname{deg} q$. We claim that this is well-defined. We have just noted that 'minus' summands are independent of $n$, so $v\left(\left[E, z^{-m} q\right]\right)$ does not depend on $n$. To see that it is independent of $m$ we must see that it is unchanged when $z^{-m} q$ is replaced by $z^{-m-1}(z q)$. By (2) and (4) we have the first of the following equalities:

$$
\begin{aligned}
v\left(\left[E, z^{-m-1}(z q)\right]\right) & =((n+1) E)_{-} \otimes(H-1)+E \otimes(H-1)+E \otimes H^{-m-1} \\
& =((n+1) E)_{-} \otimes(H-1)+E \otimes\left(H^{-m}-H^{-m-1}\right)+E \otimes H^{-m-1} \\
& =((n+1) E)_{-} \otimes(H-1)+E \otimes H^{-m} \\
& =v\left(\left[E, z^{-m} q\right]\right)
\end{aligned}
$$

To obtain the second equality we use the calculation of the ring $K\left(S^{2}\right)$ in Example 2.3, where we derived the relation $(H-1)^{2}=0$ which implies $H(H-1)=H-1$ and hence $H-1=H^{-m}-H^{-m-1}$ for all $m$. The third and fourth equalities are evident.

Another choice which might perhaps affect the value of $v\left(\left[E, z^{-m} q\right]\right)$ is the constant $t_{0}<1$ in the proof of Proposition 2.12. This could be any number sufficiently close to 1 , so varying $t_{0}$ gives a homotopy of the endomorphism $b$ in Lemma 2.13. This has no effect on the $\pm$-splitting since we can apply Lemma 2.13 to the endomorphism of $E \times I$ given by the homotopy. Hence the choice of $t_{0}$ does not affect $v\left(\left[E, z^{-m} q\right]\right)$.

It remains see that $v\left(\left[E, z^{-m} q\right]\right)$ depends only on the bundle $\left[E, z^{-m} q\right]$, not on the clutching function $z^{-m} q$ for this bundle. We showed that every bundle over $X \times S^{2}$ has the form $[E, f]$ for a normalized clutching function $f$ which was unique up to homotopy, and in Proposition 2.10 we showed that Laurent polynomial approximations to homotopic $f$ 's are Laurent-polynomial-homotopic. If we apply Propositions 2.11 and 2.12 over $X \times I$ with a Laurent polynomial homotopy as clutching function, we conclude that the two bundles $((n+1) E)_{-}$over $X \times\{0\}$ and $X \times\{1\}$ are isomorphic. This finishes the verification that $v\left(\left[E, z^{-m} q\right]\right)$ is well-defined.

It is easy to check through the definitions to see that $v$ takes sums to sums since $L^{n}\left(q_{1} \oplus q_{2}\right)=L^{n} q_{1} \oplus L^{n} q_{2}$ and, as previously noted, the $\pm$-splitting in Proposition 2.12 preserves sums. So $v$ extends to a homomorphism $K\left(X \times S^{2}\right) \rightarrow K(X) \otimes K\left(S^{2}\right)$.

The last thing to verify is that $v \mu=\mathbb{1}$. The group $K\left(S^{2}\right)$ is generated by 1 and $H$, so in view of the relation $H+H^{-1}=2$, which follows from $(H-1)^{2}=0$, we see that $K\left(S^{2}\right)$ is also generated by 1 and $H^{-1}$. Thus it suffices to show $\nu \mu=\mathbb{1}$ on elements $E \otimes H^{-m}$ for $m \geq 0$. We have $v \mu\left(E \otimes H^{-m}\right)=v\left(\left[E, z^{-m}\right]\right)=E_{-} \otimes(H-1)+E \otimes H^{-m}=$ $E \otimes H^{-m}$ since $E_{-}=0$, the polynomial $q$ being $\mathbb{I}$ so that (3) applies.

This completes the proof of Bott Periodicity.

## Elementary Applications

With the calculation $\tilde{K}^{*}\left(S^{n}\right) \approx \mathbb{Z}$ completed, it would be possible to derive many of the same applications that follow from the corresponding calculation for ordinary homology or cohomology, as in [AT]. For example:

- There is no retraction of $D^{n}$ onto its boundary $S^{n-1}$, since this would mean that the identity map of $\tilde{K}^{*}\left(S^{n-1}\right)$ factored as $\widetilde{K}^{*}\left(S^{n-1}\right) \rightarrow \widetilde{K}^{*}\left(D^{n}\right) \rightarrow \tilde{K}^{*}\left(S^{n-1}\right)$, but the middle group is trivial.
- The Brouwer fixed point theorem, that for every map $f: D^{n} \rightarrow D^{n}$ there is a point $x \in D^{n}$ with $f(x)=x$. For if not then it is easy to construct a retraction of $D^{n}$ onto $S^{n-1}$.
- The notion of degree for maps $f: S^{n} \rightarrow S^{n}$, namely the integer $d(f)$ such that the induced homomorphism $f^{*}: \tilde{K}^{*}\left(S^{n}\right) \rightarrow \widetilde{K}^{*}\left(S^{n}\right)$ is multiplication by $d(f)$. Reasoning as in Proposition 2.2, one sees that $d$ is a homomorphism $\pi_{n}\left(S^{n}\right) \rightarrow \mathbb{Z}$. In particular a reflection has degree -1 and hence the antipodal map of $S^{n}$, which is the composition of $n+1$ reflections, has degree $(-1)^{n+1}$ since $d(f g)=$ $d(f) d(g)$. Consequences of this include the fact that an even-dimensional sphere has no nonvanishing vector fields.

However there are some things homology can do that K-theory cannot do in such an elementary way, since $\widetilde{K}^{*}\left(S^{n}\right)$ can distinguish even-dimensional spheres from odddimensional spheres but it cannot distinguish between different even dimensions or different odd dimensions. This, together with the fact that we have so far only defined K-theory for compact spaces, prevents us from obtaining some of the other classical applications of homology such as Brouwer's theorems on invariance of dimension and invariance of domain, or the Jordan curve theorem and its higher-dimensional analogs.

## 3. Adams' Hopf Invariant One Theorem

With the hard work of proving Bott Periodicity now behind us, the goal of this section is to prove Adams' theorem on the Hopf invariant, with its famous applications including the nonexistence of division algebras beyond the Cayley octonions:

Theorem 2.14. The following statements are true only for $n=1,2,4$, and 8 :
(a) $\mathbb{R}^{n}$ is a division algebra.
(b) $S^{n-1}$ is parallelizable, i.e., there exist $n-1$ tangent vector fields to $S^{n-1}$ which are linearly independent at each point, or in other words, the tangent bundle to $S^{n-1}$ is trivial.
(c) $S^{n-1}$ is an H-space.

To say that $S^{n-1}$ is an H-space means there is a continuous multiplication map $S^{n-1} \times S^{n-1} \rightarrow S^{n-1}$ having a two-sided identity element $e \in S^{n-1}$. This is weaker than being a topological group since associativity and inverses are not assumed. For example, $S^{1}, S^{3}$, and $S^{7}$ are H-spaces by restricting the multiplication of complex numbers,
quaternions, and Cayley octonions to the respective unit spheres, but only $S^{1}$ and $S^{3}$ are topological groups since the multiplication of octonions is nonassociative.

A division algebra structure on $\mathbb{R}^{n}$ is a multiplication map $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that the maps $x \mapsto a x$ and $x \mapsto x a$ are linear for each $a \in \mathbb{R}^{n}$ and invertible if $a \neq 0$. Since we are dealing with linear maps $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, invertibility is equivalent to having trivial kernel, which translates into the statement that the multiplication has no zero divisors. An identity element is not assumed, but the multiplication can be modified to produce an identity in the following way. Choose a unit vector $e \in \mathbb{R}^{n}$. After composing the multiplication with an invertible linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ taking $e^{2}$ to $e$ we may assume that $e^{2}=e$. Let $\alpha$ be the map $x \mapsto x e$ and $\beta$ the map $x \mapsto e x$. The new product $(x, y) \mapsto \alpha^{-1}(x) \beta^{-1}(y)$ then sends $(x, e)$ to $\alpha^{-1}(x) \beta^{-1}(e)=\alpha^{-1}(x) e=x$, and similarly it sends ( $e, y$ ) to $y$. Since the maps $x \mapsto a x$ and $x \mapsto x a$ are surjective for each $a \neq 0$, the equations $a x=e$ and $x a=e$ are solvable, so nonzero elements of the division algebra have multiplicative inverses on the left and right.

The first step in the proof of the theorem is to reduce (a) and (b) to (c):
Lemma 2.15. If $\mathbb{R}^{n}$ is a division algebra, or if $S^{n-1}$ is parallelizable, then $S^{n-1}$ is an $H$-space.
Proof: Having a division algebra structure on $\mathbb{R}^{n}$ with two-sided identity, an H-space structure on $S^{n-1}$ is given by $(x, y) \mapsto x y /|x y|$, which is well-defined since a division algebra has no zero divisors.

Now suppose that $S^{n-1}$ is parallelizable, with tangent vector fields $v_{1}, \cdots, v_{n-1}$ which are linearly independent at each point of $S^{n-1}$. By the Gram-Schmidt process we may make the vectors $x, v_{1}(x), \cdots, v_{n-1}(x)$ orthonormal for all $x \in S^{n-1}$. We may assume also that at the first standard basis vector $e_{1}$, the vectors $v_{1}\left(e_{1}\right), \cdots, v_{n-1}\left(e_{1}\right)$ are the standard basis vectors $e_{2}, \cdots, e_{n}$, by changing the sign of $v_{n-1}$ if necessary to get orientations right, then deforming the vector fields near $e_{1}$. Let $\alpha_{x} \in S O$ ( $n$ ) send the standard basis to $x, v_{1}(x), \cdots, v_{n-1}(x)$. Then the map $(x, y) \mapsto \alpha_{x}(y)$ defines an H-space structure on $S^{n-1}$ with identity element the vector $e_{1}$ since $\alpha_{e_{1}}$ is the identity map and $\alpha_{x}\left(e_{1}\right)=x$ for all $x$.

Before proceeding further let us list a few easy consequences of Bott periodicity which will be needed.
(1) We have already seen that $\widetilde{K}\left(S^{n}\right)$ is $\mathbb{Z}$ for $n$ even and 0 for $n$ odd. This comes from repeated application of the periodicity isomorphism $\tilde{K}(X) \approx \tilde{K}\left(S^{2} X\right), \alpha \mapsto$ $\alpha *(H-1)$, the external product with the generator $H-1$ of $\tilde{K}\left(S^{2}\right)$, where $H$ is the canonical line bundle over $S^{2}=\mathbb{C} \mathbb{P}^{1}$. In particular we see that a generator of $\widetilde{K}\left(S^{2 k}\right)$ is the $k$-fold external product $(H-1) * \cdots *(H-1)$. We note also that the multiplication in $\tilde{K}\left(S^{2 k}\right)$ is trivial since this ring is the $k$-fold tensor product of the ring $\widetilde{K}\left(S^{2}\right)$, which has trivial multiplication by Example 2.3. Alternatively, we can appeal to Example 2.6.
(2) The external product $\widetilde{K}\left(S^{2 k}\right) \otimes \widetilde{K}(X) \rightarrow \widetilde{K}\left(S^{2 k} \wedge X\right)$ is an isomorphism since it is an iterate of the periodicity isomorphism.
(3) The external product $K\left(S^{2 k}\right) \otimes K(X) \rightarrow K\left(S^{2 k} \times X\right)$ is an isomorphism. This follows from (2) by the same reasoning which showed the equivalence of the reduced and unreduced forms of Bott periodicity. Since external product is a ring homomorphism, the isomorphism $\widetilde{K}\left(S^{2 k} \wedge X\right) \approx \tilde{K}\left(S^{2 k}\right) \otimes \widetilde{K}(X)$ is a ring isomorphism. For example, since $K\left(S^{2 k}\right)$ can be described as the quotient ring $\mathbb{Z}[\alpha] /\left(\alpha^{2}\right)$, we can deduce that $K\left(S^{2 k} \times S^{2 \ell}\right)$ is $\mathbb{Z}[\alpha, \beta] /\left(\alpha^{2}, \beta^{2}\right)$ where $\alpha$ and $\beta$ are the pullbacks of generators of $\tilde{K}\left(S^{2 k}\right)$ and $\tilde{K}\left(S^{2 \ell}\right)$ under the projections of $S^{2 k} \times S^{2 \ell}$ onto its two factors. An additive basis for $K\left(S^{2 k} \times S^{2 \ell}\right)$ is thus $\{1, \alpha, \beta, \alpha \beta\}$.
We can apply the last calculation to show that $S^{2 k}$ is not an H -space if $k>0$. Suppose $\mu: S^{2 k} \times S^{2 k} \rightarrow S^{2 k}$ is an H-space multiplication. The induced homomorphism of K -rings then has the form $\mu^{*}: \mathbb{Z}[\gamma] /\left(\gamma^{2}\right) \rightarrow \mathbb{Z}[\alpha, \beta] /\left(\alpha^{2}, \beta^{2}\right)$. We claim that $\mu^{*}(\gamma)=\alpha+\beta+m \alpha \beta$ for some integer $m$. The composition $S^{2 k} \xrightarrow{i} S^{2 k} \times S^{2 k} \xrightarrow{\mu} S^{2 k}$ is the identity, where $i$ is the inclusion onto either of the subspaces $S^{2 k} \times\{e\}$ or $\{e\} \times S^{2 k}$, with $e$ the identity element of the H-space structure. The map $i^{*}$ for $i$ the inclusion onto the first factor sends $\alpha$ to $\gamma$ and $\beta$ to 0 , so the coefficient of $\alpha$ in $\mu^{*}(\gamma)$ must be 1 . Similarly the coefficient of $\beta$ must be 1 , proving the claim. However, this leads to a contradiction since it implies that $\mu^{*}\left(\gamma^{2}\right)=(\alpha+\beta+m \alpha \beta)^{2}=2 \alpha \beta \neq 0$, which is impossible since $\gamma^{2}=0$.

There remains the much more difficult problem of showing that $S^{n-1}$ is not an H-space when $n$ is even and different from 2,4 , and 8 . The first step is a simple construction which associates to a map $g: S^{n-1} \times S^{n-1} \rightarrow S^{n-1}$ a map $\hat{g}: S^{2 n-1} \rightarrow S^{n}$. To define this, we regard $S^{2 n-1}$ as $\partial\left(D^{n} \times D^{n}\right)=\partial D^{n} \times D^{n} \cup D^{n} \times \partial D^{n}$, and $S^{n}$ we take as the union of two disks $D_{+}^{n}$ and $D_{-}^{n}$ with their boundaries identified. Then $\hat{g}$ is defined on $\partial D^{n} \times D^{n}$ by $\hat{g}(x, y)=|y| g(x, y /|y|) \in D_{+}^{n}$ and on $D^{n} \times \partial D^{n}$ by $\hat{g}(x, y)=|x| g(x /|x|, y) \in D_{-}^{n}$. Note that $\hat{g}$ is well-defined and continuous, even when $|x|$ or $|y|$ is zero, and $\hat{g}$ agrees with $g$ on $S^{n-1} \times S^{n-1}$.

Now we specialize to the case that $n$ is even, or in other words, we replace $n$ by $2 n$. For a map $f: S^{4 n-1} \rightarrow S^{2 n}$, let $C_{f}$ be $S^{2 n}$ with a cell $e^{4 n}$ attached by $f$. The quotient $C_{f} / S^{2 n}$ is then $S^{4 n}$, and since $\widetilde{K}^{1}\left(S^{4 n}\right)=\widetilde{K}^{1}\left(S^{2 n}\right)=0$, the exact sequence of the pair ( $C_{f}, S^{2 n}$ ) becomes a short exact sequence

$$
0 \rightarrow \tilde{K}\left(S^{4 n}\right) \rightarrow \tilde{K}\left(C_{f}\right) \rightarrow \tilde{K}\left(S^{2 n}\right) \rightarrow 0
$$

Let $\alpha \in \widetilde{K}\left(C_{f}\right)$ be the image of the generator $(H-1) * \cdots *(H-1)$ of $\widetilde{K}\left(S^{4 n}\right)$ and let $\beta \in \tilde{K}\left(C_{f}\right)$ map to the generator $(H-1) * \cdots *(H-1)$ of $\tilde{K}\left(S^{2 n}\right)$. The element $\beta^{2}$ maps to 0 in $\widetilde{K}\left(S^{2 n}\right)$ since the square of any element of $\tilde{K}\left(S^{2 n}\right)$ is zero. So by exactness we have $\beta^{2}=h \alpha$ for some integer $h$. The mod 2 value of $h$ depends only on $f$, not on the choice of $\beta$, since $\beta$ is unique up to adding an integer multiple of $\alpha$, and $(\beta+m \alpha)^{2}=\beta^{2}+2 m \alpha \beta$ since $\alpha^{2}=0$. The value of $h \bmod 2$ is called the
$\bmod 2$ Hopf invariant of $f$. In fact $\alpha \beta=0$ so $h$ is well-defined in $\mathbb{Z}$ not just $\mathbb{Z}_{2}$, as we will see in $\S 3.2$, but for our present purposes the $\bmod 2$ value of $h$ suffices.

Lemma 2.16. If $g: S^{2 n-1} \times S^{2 n-1} \rightarrow S^{2 n-1}$ is an $H$-space multiplication, then the as$\|$ sociated map $\hat{g}: S^{4 n-1} \rightarrow S^{2 n}$ has Hopf invariant $\pm 1$.

Proof: Let $e \in S^{2 n-1}$ be the identity element for the H -space multiplication, and let $f=\hat{g}$. In view of the definition of $f$ it is natural to view the characteristic map $\Phi$ of the $4 n$-cell of $C_{f}$ as a map $\left(D^{2 n} \times D^{2 n}, \partial\left(D^{2 n} \times D^{2 n}\right)\right) \rightarrow\left(C_{f}, S^{2 n}\right)$. In the following commutative diagram the horizontal maps are the product maps. The diagonal map is external product, equivalent to the external product $\widetilde{K}\left(S^{2 n}\right) \otimes \widetilde{K}\left(S^{2 n}\right) \rightarrow \widetilde{K}\left(S^{4 n}\right)$, which is an isomorphism since it is an iterate of the Bott periodicity isomorphism.

$$
\begin{gathered}
\widetilde{K}\left(C_{f}\right) \otimes \widetilde{K}\left(C_{f}\right) \longrightarrow \widetilde{K}\left(C_{f}\right) \\
\uparrow \approx \\
\widetilde{K}\left(C_{f}, D_{-}^{2 n}\right) \otimes \widetilde{K}\left(C_{f}, D_{+}^{2 n}\right) \longrightarrow \widetilde{K}\left(C_{f}, S^{2 n}\right) \\
\Phi^{*} \otimes \Phi^{*} \downarrow \\
\widetilde{K}\left(D^{2 n} \times D^{2 n}, \partial D^{2 n} \times D^{2 n}\right) \otimes \widetilde{K}\left(D^{2 n} \times D^{2 n}, D^{2 n} \times \partial D^{2 n}\right) \longrightarrow \widetilde{K}\left(D^{2 n} \times D^{2 n}, \partial\left(D^{2 n} \times D^{2 n}\right)\right) \\
\downarrow \approx \\
\widetilde{K}\left(D^{2 n} \times\{e\}, \partial D^{2 n} \times\{e\}\right) \otimes \widetilde{K}\left(\{e\} \times \widetilde{\left.D^{2 n},\{e\} \times \partial D^{2 n}\right)}\right.
\end{gathered}
$$

By the definition of an H -space and the definition of $f$, the map $\Phi$ restricts to a homeomorphism from $D^{2 n} \times\{e\}$ onto $D_{+}^{2 n}$ and from $\{e\} \times D^{2 n}$ onto $D_{-}^{2 n}$. It follows that the element $\beta \otimes \beta$ in the upper left group maps to a generator of the group in the bottom row of the diagram, since $\beta$ restricts to a generator of $\widetilde{K}\left(S^{2 n}\right)$ by definition. Therefore by commutativity of the diagram, the product map in the top row sends $\beta \otimes \beta$ to $\pm \alpha$ since $\alpha$ was defined to be the image of a generator of $\widetilde{K}\left(C_{f}, S^{2 n}\right)$. Thus we have $\beta^{2}= \pm \alpha$, which says that the Hopf invariant of $f$ is $\pm 1$.

In view of this lemma, Theorem 2.14 becomes a consequence of the following theorem of Adams:
|| Theorem 2.17. If $f: S^{4 n-1} \rightarrow S^{2 n}$ is a map whose mod 2 Hopf invariant is 1 , then || $n=1,2$, or 4 .

The proof of this will occupy the rest of this section.

## Adams Operations

The Hopf invariant is defined in terms of the ring structure in K-theory, but in order to prove Adams' theorem, more structure is needed, namely certain ring homomorphisms $\psi^{k}: K(X) \rightarrow K(X)$. Here are their basic properties:

Theorem 2.18. There exist ring homomorphisms $\psi^{k}: K(X) \rightarrow K(X)$, defined for all compact Hausdorff spaces $X$ and all integers $k \geq 0$, and satisfying:
(1) $\psi^{k} f^{*}=f^{*} \psi^{k}$ for all maps $f: X \rightarrow Y$. (Naturality)
(2) $\psi^{k}(L)=L^{k}$ if $L$ is a line bundle.
(3) $\psi^{k} \circ \psi^{\ell}=\psi^{k \ell}$.
(4) $\psi^{p}(\alpha) \equiv \alpha^{p} \bmod p$ for $p$ prime.

This last statement means that $\psi^{p}(\alpha)-\alpha^{p}=p \beta$ for some $\beta \in K(X)$.
In the special case of a vector bundle $E$ which is a sum of line bundles $L_{i}$, properties (2) and (3) give the formula $\psi^{k}\left(L_{1} \oplus \cdots \oplus L_{n}\right)=L_{1}^{k}+\cdots+L_{n}^{k}$. We would like a general definition of $\psi^{k}(E)$ which specializes to this formula when $E$ is a sum of line bundles. The idea is to use the exterior powers $\lambda^{k}(E)$. From the corresponding properties for vector spaces we have:
(i) $\lambda^{k}\left(E_{1} \oplus E_{2}\right) \approx \oplus_{i}\left(\lambda^{i}\left(E_{1}\right) \otimes \lambda^{k-i}\left(E_{2}\right)\right)$.
(ii) $\lambda^{0}(E)=1$, the trivial line bundle.
(iii) $\lambda^{1}(E)=E$.
(iv) $\lambda^{k}(E)=0$ for $k$ greater than the maximum dimension of the fibers of $E$.

Recall that we want $\psi^{k}(E)$ to be $L_{1}^{k}+\cdots+L_{n}^{k}$ when $E=L_{1} \oplus \cdots \oplus L_{n}$ for line bundles $L_{i}$. We will show in this case that there is a polynomial $s_{k}$ with integer coefficients such that $L_{1}^{k}+\cdots+L_{n}^{k}=s_{k}\left(\lambda^{1}(E), \cdots, \lambda^{k}(E)\right)$. This will lead us to define $\psi^{k}(E)=$ $s_{k}\left(\lambda^{1}(E), \cdots, \lambda^{k}(E)\right)$ for an arbitrary vector bundle $E$.

To see what the polynomial $s_{k}$ should be, we first use the exterior powers $\lambda^{i}(E)$ to define a polynomial $\lambda_{t}(E)=\sum_{i} \lambda^{i}(E) t^{i} \in K(X)[t]$. This is a finite sum by property (iv), and property (i) says that $\lambda_{t}\left(E_{1} \oplus E_{2}\right)=\lambda_{t}\left(E_{1}\right) \lambda_{t}\left(E_{2}\right)$. When $E=L_{1} \oplus \cdots \oplus L_{n}$ this implies that $\lambda_{t}(E)=\prod_{i} \lambda_{t}\left(L_{i}\right)$, which equals $\prod_{i}\left(1+L_{i} t\right)$ by (ii), (iii), and (iv). The coefficient $\lambda^{j}(E)$ of $t^{j}$ in $\lambda_{t}(E)=\prod_{i}\left(1+L_{i} t\right)$ is the $j^{\text {th }}$ elementary symmetric function $\sigma_{j}$ of the $L_{i}$ 's, the sum of all products of $j$ distinct $L_{i}$ 's. Thus we have

$$
\begin{equation*}
\lambda^{j}(E)=\sigma_{j}\left(L_{1}, \cdots, L_{n}\right) \quad \text { if } E=L_{1} \oplus \cdots \oplus L_{n} \tag{*}
\end{equation*}
$$

To make the discussion completely algebraic, let us introduce the variable $t_{i}$ for $L_{i}$. Thus $\left(1+t_{1}\right) \cdots\left(1+t_{n}\right)=1+\sigma_{1}+\cdots+\sigma_{n}$, where $\sigma_{j}$ is the $j^{\text {th }}$ elementary symmetric polynomial in the $t_{i}$ 's. The fundamental theorem on symmetric polynomials, proved for example in [Lang, p. 134] or [van der Waerden, §26], asserts that every degree $k$ symmetric polynomial in $t_{1}, \cdots, t_{n}$ can be expressed as a unique polynomial in $\sigma_{1}, \cdots, \sigma_{k}$. In particular, $t_{1}^{k}+\cdots+t_{n}^{k}$ is a polynomial $s_{k}\left(\sigma_{1}, \cdots, \sigma_{k}\right)$, called a Newton polynomial. This polynomial $s_{k}$ is independent of $n$ since we can pass from $n$ to $n-1$ by setting $t_{n}=0$. A recursive formula for $s_{k}$ is

$$
s_{k}=\sigma_{1} s_{k-1}-\sigma_{2} s_{k-2}+\cdots+(-1)^{k-2} \sigma_{k-1} s_{1}+(-1)^{k-1} k \sigma_{k}
$$

To derive this we may take $n=k$, and then if we substitute $x=-t_{i}$ in the identity $\left(x+t_{1}\right) \cdots\left(x+t_{k}\right)=x^{k}+\sigma_{1} x^{k-1}+\cdots+\sigma_{k}$ we get $t_{i}^{k}=\sigma_{1} t_{i}^{k-1}-\cdots+(-1)^{k-1} \sigma_{k}$.

Summing over $i$ then gives the recursion relation. The recursion relation easily yields for example

$$
\begin{gathered}
s_{1}=\sigma_{1} \quad s_{2}=\sigma_{1}^{2}-2 \sigma_{2} \quad s_{3}=\sigma_{1}^{3}-3 \sigma_{1} \sigma_{2}+3 \sigma_{3} \\
\\
s_{4}=\sigma_{1}^{4}-4 \sigma_{1}^{2} \sigma_{2}+4 \sigma_{1} \sigma_{3}+2 \sigma_{2}^{2}-4 \sigma_{4}
\end{gathered}
$$

Summarizing, if we define $\psi^{k}(E)=s_{k}\left(\lambda^{1}(E), \cdots, \lambda^{k}(E)\right)$, then in the case that $E$ is a sum of line bundles $L_{1} \oplus \cdots \oplus L_{n}$ we have

$$
\begin{aligned}
\psi^{k}(E) & =s_{k}\left(\lambda^{1}(E), \cdots, \lambda^{k}(E)\right) \\
& =s_{k}\left(\sigma_{1}\left(L_{1}, \cdots, L_{n}\right), \cdots, \sigma_{k}\left(L_{1}, \cdots, L_{n}\right)\right) \quad \text { by }(*) \\
& =L_{1}^{k}+\cdots+L_{n}^{k}
\end{aligned}
$$

Verifying that the definition $\psi^{k}(E)=s_{k}\left(\lambda^{1}(E), \cdots, \lambda^{k}(E)\right)$ gives operations on $K(X)$ satisfying the properties listed in the theorem will be rather easy if we make use of the following general result:

The Splitting Principle. Given a vector bundle $E \rightarrow X$ with $X$ compact Hausdorff, there is a compact Hausdorff space $F(E)$ and a map $p: F(E) \rightarrow X$ such that the induced map $p^{*}: K^{*}(X) \rightarrow K^{*}(F(E))$ is injective and $p^{*}(E)$ splits as a sum of line bundles.

This will be proved later in this section, but for the moment let us assume it and proceed with the proof of Theorem 2.18 and Adams' theorem.
Proof of Theorem 2.18: Property (1) for vector bundles, $f^{*}\left(\psi^{k}(E)\right)=\psi^{k}\left(f^{*}(E)\right)$, follows immediately from the relation $f^{*}\left(\lambda^{i}(E)\right)=\lambda^{i}\left(f^{*}(E)\right)$. Additivity of $\psi^{k}$ for vector bundles, $\psi^{k}\left(E_{1} \oplus E_{2}\right)=\psi^{k}\left(E_{1}\right)+\psi^{k}\left(E_{2}\right)$, follows from the splitting principle since we can first pull back to split $E_{1}$ then do a further pullback to split $E_{2}$, and the formula $\psi^{k}\left(L_{1} \oplus \cdots \oplus L_{n}\right)=L_{1}^{k}+\cdots+L_{n}^{k}$ preserves sums. Since $\psi^{k}$ is additive on vector bundles, it induces an additive operation on $K(X)$ defined by $\psi^{k}\left(E_{1}-E_{2}\right)=$ $\psi^{k}\left(E_{1}\right)-\psi^{k}\left(E_{2}\right)$.

For this extended $\psi^{k}$ the properties (1) and (2) are clear. Multiplicativity is also easy from the splitting principle: If $E$ is the sum of line bundles $L_{i}$ and $E^{\prime}$ is the sum of line bundles $L_{j}^{\prime}$, then $E \otimes E^{\prime}$ is the sum of the line bundles $L_{i} \otimes L_{j}^{\prime}$, so $\psi^{k}\left(E \otimes E^{\prime}\right)=$ $\sum_{i, j} \psi^{k}\left(L_{i} \otimes L_{j}^{\prime}\right)=\sum_{i, j}\left(L_{i} \otimes L_{j}^{\prime}\right)^{k}=\sum_{i, j} L_{i}^{k} \otimes L_{j}^{\prime k}=\sum_{i} L_{i}^{k} \sum_{j} L_{j}^{\prime k}=\psi^{k}(E) \psi^{k}\left(E^{\prime}\right)$. Thus $\psi^{k}$ is multiplicative for vector bundles, and it follows formally that it is multiplicative on elements of $K(X)$. For property (3) the splitting principle and additivity reduce us to the case of line bundles, where $\psi^{k}\left(\psi^{\ell}(L)\right)=L^{k \ell}=\psi^{k \ell}(L)$. Likewise for (4), if $E=L_{1}+\cdots+L_{n}$, then $\psi^{p}(E)=L_{1}^{p}+\cdots+L_{n}^{p} \equiv\left(L_{1}+\cdots+L_{n}\right)^{p}=E^{p} \bmod p$.

By the naturality property (1), $\psi^{k}$ restricts to an operation $\psi^{k}: \tilde{K}(X) \rightarrow \widetilde{K}(X)$ since $\tilde{K}(X)$ is the kernel of the homomorphism $K(X) \rightarrow K\left(x_{0}\right)$ for $x_{0} \in X$. For the external product $\tilde{K}(X) \otimes \tilde{K}(Y) \rightarrow \tilde{K}(X \wedge Y)$, we have the formula $\psi^{k}(\alpha * \beta)=\psi^{k}(\alpha) * \psi^{k}(\beta)$
since if one looks back at the definition of $\alpha * \beta$, one sees this was defined as $p_{1}^{*}(\alpha) p_{2}^{*}(\beta)$, hence

$$
\begin{aligned}
\psi^{k}(\alpha * \beta) & =\psi^{k}\left(p_{1}^{*}(\alpha) p_{2}^{*}(\beta)\right) \\
& =\psi^{k}\left(p_{1}^{*}(\alpha)\right) \psi^{k}\left(p_{2}^{*}(\beta)\right) \\
& =p_{1}^{*}\left(\psi^{k}(\alpha)\right) p_{2}^{*}\left(\psi^{k}(\beta)\right) \\
& =\psi^{k}(\alpha) * \psi^{k}(\beta)
\end{aligned}
$$

This will allow us to compute $\psi^{k}$ on $\tilde{K}\left(S^{2 n}\right) \approx \mathbb{Z}$. In this case $\psi^{k}$ must be multiplication by some integer since it is an additive homomorphism of $\mathbb{Z}$.
|| Proposition 2.19. $\psi^{k}: \widetilde{K}\left(S^{2 n}\right) \rightarrow \widetilde{K}\left(S^{2 n}\right)$ is multiplication by $k^{n}$.
Proof: Consider first the case $n=1$. Since $\psi^{k}$ is additive, it will suffice to show $\psi^{k}(\alpha)=k \alpha$ for $\alpha$ a generator of $\widetilde{K}\left(S^{2}\right)$. We can take $\alpha=H-1$ for $H$ the canonical line bundle over $S^{2}=\mathbb{C} \mathrm{P}^{1}$. Then

$$
\begin{aligned}
\psi^{k}(\alpha)=\psi^{k}(H-1) & =H^{k}-1 \quad \text { by property }(2) \\
& =(1+\alpha)^{k}-1 \\
& =1+k \alpha-1 \quad \text { since } \alpha^{i}=(H-1)^{i}=0 \text { for } i \geq 2 \\
& =k \alpha
\end{aligned}
$$

When $n>1$ we use the external product $\widetilde{K}\left(S^{2}\right) \otimes \widetilde{K}\left(S^{2 n-2}\right) \rightarrow \widetilde{K}\left(S^{2 n}\right)$, which is an isomorphism, and argue by induction. Assuming the desired formula holds in $\widetilde{K}\left(S^{2 n-2}\right)$, we have $\psi^{k}(\alpha * \beta)=\psi^{k}(\alpha) * \psi^{k}(\beta)=k \alpha * k^{n-1} \beta=k^{n}(\alpha * \beta)$, and we are done.

Now we can use the operations $\psi^{2}$ and $\psi^{3}$ and the relation $\psi^{2} \psi^{3}=\psi^{6}=\psi^{3} \psi^{2}$ to prove Adams' theorem.
Proof of Theorem 2.17: The definition of the Hopf invariant of a map $f: S^{4 n-1} \rightarrow S^{2 n}$ involved elements $\alpha, \beta \in \tilde{K}\left(C_{f}\right)$. By Proposition 2.19, $\psi^{k}(\alpha)=k^{2 n} \alpha$ since $\alpha$ is the image of a generator of $\widetilde{K}\left(S^{4 n}\right)$. Similarly, $\psi^{k}(\beta)=k^{n} \beta+\mu_{k} \alpha$ for some $\mu_{k} \in \mathbb{Z}$. Therefore

$$
\psi^{k} \psi^{\ell}(\beta)=\psi^{k}\left(\ell^{n} \beta+\mu_{\ell} \alpha\right)=k^{n} \ell^{n} \beta+\left(k^{2 n} \mu_{\ell}+\ell^{n} \mu_{k}\right) \alpha
$$

Since $\psi^{k} \psi^{\ell}=\psi^{k \ell}=\psi^{\ell} \psi^{k}$, the coefficient $k^{2 n} \mu_{\ell}+\ell^{n} \mu_{k}$ of $\alpha$ is unchanged when $k$ and $\ell$ are switched. This gives the relation

$$
k^{2 n} \mu_{\ell}+\ell^{n} \mu_{k}=\ell^{2 n} \mu_{k}+k^{n} \mu_{\ell}, \quad \text { or } \quad\left(k^{2 n}-k^{n}\right) \mu_{\ell}=\left(\ell^{2 n}-\ell^{n}\right) \mu_{k}
$$

By property (6) of $\psi^{2}$, we have $\psi^{2}(\beta) \equiv \beta^{2} \bmod 2$. Since $\beta^{2}=h \alpha$ with $h$ the Hopf invariant of $f$, the formula $\psi^{2}(\beta)=2^{n} \beta+\mu_{2} \alpha$ implies that $\mu_{2} \equiv h \bmod 2$, so $\mu_{2}$ is odd if we assume $h= \pm 1$. By the preceding displayed formula we have $\left(2^{2 n}-2^{n}\right) \mu_{3}=$ $\left(3^{2 n}-3^{n}\right) \mu_{2}$, or $2^{n}\left(2^{n}-1\right) \mu_{3}=3^{n}\left(3^{n}-1\right) \mu_{2}$, so $2^{n}$ divides $3^{n}\left(3^{n}-1\right) \mu_{2}$. Since $3^{n}$
and $\mu_{2}$ are odd, $2^{n}$ must then divide $3^{n}-1$. The proof is completed by the following elementary number theory fact.
$\|$ Lemma 2.20. If $2^{n}$ divides $3^{n}-1$ then $n=1,2$, or 4 .
Proof: Write $n=2^{\ell} m$ with $m$ odd. We will show that the highest power of 2 dividing $3^{n}-1$ is 2 for $\ell=0$ and $2^{\ell+2}$ for $\ell>0$. This implies the lemma since if $2^{n}$ divides $3^{n}-1$, then by this fact, $n \leq \ell+2$, hence $2^{\ell} \leq 2^{\ell} m=n \leq \ell+2$, which implies $\ell \leq 2$ and $n \leq 4$. The cases $n=1,2,3,4$ can then be checked individually.

We find the highest power of 2 dividing $3^{n}-1$ by induction on $\ell$. For $\ell=0$ we have $3^{n}-1=3^{m}-1 \equiv 2 \bmod 4$ since $3 \equiv-1 \bmod 4$ and $m$ is odd. In the next case $\ell=1$ we have $3^{n}-1=3^{2 m}-1=\left(3^{m}-1\right)\left(3^{m}+1\right)$. The highest power of 2 dividing the first factor is 2 as we just showed, and the highest power of 2 dividing the second factor is 4 since $3^{m}+1 \equiv 4 \bmod 8$ because $3^{2} \equiv 1 \bmod 8$ and $m$ is odd. So the highest power of 2 dividing the product $\left(3^{m}-1\right)\left(3^{m}+1\right)$ is 8 . For the inductive step of passing from $\ell$ to $\ell+1$ with $\ell \geq 1$, or in other words from $n$ to $2 n$ with $n$ even, write $3^{2 n}-1=\left(3^{n}-1\right)\left(3^{n}+1\right)$. Then $3^{n}+1 \equiv 2 \bmod 4$ since $n$ is even, so the highest power of 2 dividing $3^{n}+1$ is 2 . Thus the highest power of 2 dividing $3^{2 n}-1$ is twice the highest power of 2 dividing $3^{n}-1$.

## The Splitting Principle

The splitting principle will be a fairly easy consequence of a general result about the K-theory of fiber bundles called the Leray-Hirsch theorem, together with a calculation of the ring structure of $K^{*}\left(\mathbb{C}^{n}\right)$. The following proposition will allow us to compute at least the additive structure of $K^{*}\left(\mathbb{C} \mathbb{P}^{n}\right)$.

Proposition 2.21. If $X$ is a finite cell complex with $n$ cells, then $K^{*}(X)$ is a finitely generated group with at most $n$ generators. If all the cells of $X$ have even dimension then $K^{1}(X)=0$ and $K^{0}(X)$ is free abelian with one basis element for each cell.

The phrase 'finite cell complex' would normally mean 'finite CW complex' but we can take it to be something slightly more general: a space built from a finite discrete set by attaching a finite number of cells in succession, with no conditions on the dimensions of these cells, so cells are not required to attach only to cells of lower dimension. Finite cell complexes are always homotopy equivalent to finite CW complexes (by deforming each successive attaching map to be cellular) so the only advantages of finite cell complexes are technical. In particular, it is easy to see that a space is a finite cell complex if it is a fiber bundle over a finite cell complex with fibers that are also finite cell complexes. This is shown in Proposition 2.26 in a brief appendix to this section. It implies that the splitting principle can be applied staying within the realm of finite cell complexes.

Proof: We show this by induction on the number of cells. The complex $X$ is obtained from a subcomplex $A$ by attaching a $k$-cell, for some $k$. For the pair $(X, A)$ we have an exact sequence $\widetilde{K}^{*}(X / A) \rightarrow \widetilde{K}^{*}(X) \rightarrow \widetilde{K}^{*}(A)$. Since $X / A=S^{k}$, we have $\widetilde{K}^{*}(X / A) \approx \mathbb{Z}$, and exactness implies that $\widetilde{K}^{*}(X)$ requires at most one more generator than $\widetilde{K}^{*}(A)$.

The first term of the exact sequence $K^{1}(X / A) \rightarrow K^{1}(X) \rightarrow K^{1}(A)$ is zero if all cells of $X$ are of even dimension, so induction on the number of cells implies that $K^{1}(X)=0$. Then there is a short exact sequence $0 \rightarrow \widetilde{K}^{0}(X / A) \rightarrow \widetilde{K}^{0}(X) \rightarrow \widetilde{K}^{0}(A) \rightarrow 0$ with $\widetilde{K}^{0}(X / A) \approx \mathbb{Z}$. By induction $\widetilde{K}(A)$ is free, so this sequence splits, hence $K^{0}(X) \approx$ $\mathbb{Z} \oplus K^{0}(A)$ and the final statement of the proposition follows.

This proposition applies in particular to $\mathbb{C} \mathbb{P}^{n}$, which has a cell structure with one cell in each dimension $0,2,4, \cdots, 2 n$, so $K^{1}\left(\mathbb{C} P^{n}\right)=0$ and $K^{0}\left(\mathbb{C} P^{n}\right) \approx \mathbb{Z}^{n+1}$. The ring structure is as simple as one could hope for:

Proposition 2.22. $K\left(\mathbb{C} \mathbb{P}^{n}\right)$ is the quotient ring $\mathbb{Z}[L] /(L-1)^{n+1}$ where $L$ is the canonical line bundle over $\mathbb{C} \mathrm{P}^{n}$.

Thus by the change of variable $x=L-1$ we see that $K\left(\mathbb{C} \mathbb{P}^{n}\right)$ is the truncated polynomial ring $\mathbb{Z}[x] /\left(x^{n+1}\right)$, with additive basis $1, x, \cdots, x^{n}$. It follows that $1, L, \cdots, L^{n}$ is also an additive basis.

Proof: The exact sequence for the pair ( $\mathbb{C} \mathrm{P}^{n}, \mathbb{C} \mathrm{P}^{n-1}$ ) gives a short exact sequence

$$
0 \longrightarrow K\left(\mathbb{C} \mathrm{P}^{n}, \mathbb{C} \mathrm{P}^{n-1}\right) \longrightarrow K\left(\mathbb{C} \mathrm{P}^{n}\right) \xrightarrow{\rho} K\left(\mathbb{C} \mathrm{P}^{n-1}\right) \longrightarrow 0
$$

We shall prove:
$\left(a_{n}\right) \quad(L-1)^{n}$ generates the kernel of the restriction map $\rho$.
Hence if we assume inductively that $K\left(\mathbb{C} \mathbb{P}^{n-1}\right)=\mathbb{Z}[L] /(L-1)^{n}$, then $\left(a_{n}\right)$ and the preceding exact sequence imply that $\left\{1, L-1, \cdots,(L-1)^{n}\right\}$ is an additive basis for $K\left(\mathbb{C} \mathrm{P}^{n}\right)$. Since $(L-1)^{n+1}=0$ in $K\left(\mathbb{C} \mathrm{P}^{n}\right)$ by $\left(a_{n+1}\right)$, it follows that $K\left(C P^{n}\right)$ is the quotient ring $\mathbb{Z}[L] /(L-1)^{n+1}$, completing the induction.

A reason one might expect $\left(a_{n}\right)$ to be true is that the kernel of $\rho$ can be identified with $K\left(\mathbb{C} P^{n}, \mathbb{C} \mathrm{P}^{n-1}\right)=\widetilde{K}\left(S^{2 n}\right)$ by the short exact sequence, and Bott periodicity implies that the $n$-fold reduced external product of the generator $L-1$ of $\widetilde{K}\left(S^{2}\right)$ with itself generates $\widetilde{K}\left(S^{2 n}\right)$. To make this rough argument into a proof we will have to relate the external product $\tilde{K}\left(S^{2}\right) \otimes \cdots \otimes \tilde{K}\left(S^{2}\right) \rightarrow \tilde{K}\left(S^{2 n}\right)$ to the 'internal' product $K\left(\mathbb{C} \mathrm{P}^{n}\right) \otimes \cdots \otimes K\left(\mathbb{C}^{n}\right) \rightarrow K\left(\mathbb{C} \mathrm{P}^{n}\right)$.

The space $\mathbb{C} P^{n}$ is the quotient of the unit sphere $S^{2 n+1}$ in $\mathbb{C}^{n+1}$ under multiplication by scalars in $S^{1} \subset \mathbb{C}$. Instead of $S^{2 n+1}$ we could equally well take the boundary of the product $D_{0}^{2} \times \cdots \times D_{n}^{2}$ where $D_{i}^{2}$ is the unit disk in the $i^{t h}$ coordinate of $\mathbb{C}^{n+1}$, and we start the count with $i=0$ for convenience. Then we have

$$
\partial\left(D_{0}^{2} \times \cdots \times D_{n}^{2}\right)=\bigcup_{i}\left(D_{0}^{2} \times \cdots \times \partial D_{i}^{2} \times \cdots \times D_{n}^{2}\right)
$$

The action of $S^{1}$ by scalar multiplication respects this decomposition. The orbit space of $D_{0}^{2} \times \cdots \times \partial D_{i}^{2} \times \cdots \times D_{n}^{2}$ under the action is a subspace $C_{i} \subset \mathbb{C} P^{n}$ homeomorphic to the product $D_{0}^{2} \times \cdots \times D_{n}^{2}$ with the factor $D_{i}^{2}$ deleted. Thus we have a decomposition $\mathbb{C P}^{n}=\cup_{i} C_{i}$ with each $C_{i}$ homeomorphic to $D^{2 n}$ and with $C_{i} \cap C_{j}=\partial C_{i} \cap \partial C_{j}$ for $i \neq j$.

Consider now $C_{0}=D_{1}^{2} \times \cdots \times D_{n}^{2}$. Its boundary is decomposed into the pieces $\partial_{i} C_{0}=D_{1}^{2} \times \cdots \times \partial D_{i}^{2} \times \cdots \times D_{n}^{2}$. The inclusions $\left(D_{i}^{2}, \partial D_{i}^{2}\right) \subset\left(C_{0}, \partial_{i} C_{0}\right) \subset\left(\mathbb{C} P^{n}, C_{i}\right)$ give rise to a commutative diagram

where the maps from the first column to the second are the $n$-fold products. The upper map in the middle column is an isomorphism because the inclusion $C_{0} \hookrightarrow \mathbb{C}{ }^{n}$ induces a homeomorphism $C_{0} / \partial C_{0} \approx \mathbb{C} \mathbb{P}^{n} /\left(C_{1} \cup \cdots \cup C_{n}\right)$. The $\mathbb{C} \mathbb{P}^{n-1}$ at the right side of the diagram sits in $\mathbb{C} P^{n}$ in the last $n$ coordinates of $\mathbb{C}^{n+1}$, so is disjoint from $C_{0}$, hence the quotient map $\mathbb{C} \mathbb{P}^{n} / \mathbb{C} \mathrm{P}^{n-1} \rightarrow \mathbb{C} \mathrm{P}^{n} /\left(C_{1} \cup \cdots \cup C_{n}\right)$ is a homotopy equivalence.

The element $x_{i} \in K\left(\mathbb{C} P^{n}, C_{i}\right)$ mapping downward to $L-1 \in K\left(\mathbb{C} P^{n}\right)$ maps upward to a generator of $K\left(C_{0}, \partial_{i} C_{0}\right) \approx K\left(D_{i}^{2}, \partial D_{i}^{2}\right)$. By commutativity of the diagram, the product $x_{1} \cdots x_{n}$ then generates $K\left(\mathbb{C P}^{n}, C_{1} \cup \cdots \cup C_{n}\right)$. This means that $(L-1)^{n}$ generates the image of the map $K\left(\mathbb{C} P^{n}, \mathbb{C} P^{n-1}\right) \rightarrow K\left(\mathbb{C} P^{n}\right)$, which equals the kernel of $\rho$, proving ( $a_{n}$ ).

Since $\mathbb{C} \mathbb{P}^{n}$ is the union of the $n+1$ balls $C_{i}$, Example 2.6 shows that all products of $n+1$ elements of $\widetilde{K}\left(\mathbb{C} \mathbb{P}^{n}\right)$ must be zero, in particular $(L-1)^{n+1}=0$. But as we have just seen, $(L-1)^{n}$ is nonzero, so the result in Example 2.6 is best possible in terms of the degree of nilpotency.

Now we come to the Leray-Hirsch theorem for K-theory, which will be the major theoretical ingredient in the proof of the splitting principle:

Theorem 2.23. Let $p: E \rightarrow B$ be a fiber bundle with $E$ and $B$ compact Hausdorff and with fiber $F$ such that $K^{*}(F)$ is free. Suppose that there exist classes $c_{1}, \cdots, c_{k} \in$ $K^{*}(E)$ that restrict to a basis for $K^{*}(F)$ in each fiber $F$. If either
(a) $B$ is a finite cell complex, or
(b) $F$ is a finite cell complex having all cells of even dimension, then $K^{*}(E)$, as a module over $K^{*}(B)$, is free with basis $\left\{c_{1}, \cdots, c_{k}\right\}$.

Here the $K^{*}(B)$-module structure on $K^{*}(E)$ is defined by $\beta \cdot \gamma=p^{*}(\beta) \gamma$ for $\beta \in K^{*}(B)$ and $\gamma \in K^{*}(E)$. Another way to state the conclusion of the theorem is to say that the map $\Phi: K^{*}(B) \otimes K^{*}(F) \rightarrow K^{*}(E), \Phi\left(\sum_{i} b_{i} \otimes i^{*}\left(c_{i}\right)\right)=\sum_{i} p^{*}\left(b_{i}\right) c_{i}$ for $i$ the inclusion $F \hookrightarrow E$, is an isomorphism.

In the case of the product bundle $E=F \times B$ the classes $c_{i}$ can be chosen to be the pullbacks under the projection $E \rightarrow F$ of a basis for $K^{*}(F)$. The theorem then asserts that the external product $K^{*}(F) \otimes K^{*}(B) \rightarrow K^{*}(F \times B)$ is an isomorphism.

For most of our applications of the theorem either case (a) or case (b) will suffice. The proof of (a) is somewhat simpler than (b), and we include (b) mainly to obtain the splitting principle for vector bundles over arbitrary compact Hausdorff base spaces.

Proof: For a subspace $B^{\prime} \subset B$ let $E^{\prime}=p^{-1}\left(B^{\prime}\right)$. Then we have a diagram
(*)

where the left-hand $\Phi$ is defined by the same formula $\Phi\left(\sum_{i} b_{i} \otimes i^{*}\left(c_{i}\right)\right)=\sum_{i} p^{*}\left(b_{i}\right) c_{i}$, but with $p^{*}\left(b_{i}\right) c_{i}$ referring now to the relative product $K^{*}\left(E, E^{\prime}\right) \times K^{*}(E) \rightarrow K^{*}\left(E, E^{\prime}\right)$. The right-hand $\Phi$ is defined using the restrictions of the $c_{i}$ 's to the subspace $E^{\prime}$. To see that the diagram $(*)$ commutes, we can interpolate between its two rows the row

$$
\rightarrow K^{*}\left(E, E^{\prime}\right) \otimes K^{*}(F) \longrightarrow K^{*}(E) \otimes K^{*}(F) \longrightarrow K^{*}\left(E^{\prime}\right) \otimes K^{*}(F) \longrightarrow
$$

by factoring $\Phi$ as the composition $\sum_{i} b_{i} \otimes i^{*}\left(c_{i}\right) \mapsto \sum_{i} p^{*}\left(b_{i}\right) \otimes i^{*}\left(c_{i}\right) \mapsto \sum_{i} p^{*}\left(b_{i}\right) c_{i}$. The upper squares of the enlarged diagram then commute trivially, and the lower squares commute by Proposition 2.8. The lower row of the diagram is of course exact. The upper row is also exact since we assume $K^{*}(F)$ is free, and tensoring an exact sequence with a free abelian group preserves exactness, the result of the tensoring operation being simply to replace the given exact sequence by the direct sum of a number of copies of itself.

The proof in case (a) will be by a double induction, first on the dimension of $B$, then within a given dimension, on the number of cells. The induction starts with the trivial case that $B$ is zero-dimensional, hence a finite discrete set. For the induction step, suppose $B$ is obtained from a subcomplex $B^{\prime}$ by attaching a cell $e^{n}$, and let $E^{\prime}=p^{-1}\left(B^{\prime}\right)$ as above. By induction on the number of cells of $B$ we may assume the right-hand $\Phi$ in $(*)$ is an isomorphism. If the left-hand $\Phi$ is also an isomorphism, then the five-lemma will imply that the middle $\Phi$ is an isomorphism, finishing the induction step.

Let $\varphi:\left(D^{n}, S^{n-1}\right) \rightarrow\left(B, B^{\prime}\right)$ be a characteristic map for the attached $n$-cell. Since $D^{n}$ is contractible, the pullback bundle $\varphi^{*}(E)$ is a product, and so we have a commutative diagram


The two horizontal maps are isomorphisms since $\varphi$ restricts to a homeomorphism on the interior of $D^{n}$, hence induces homeomorphisms $B / B^{\prime} \approx D^{n} / S^{n-1}$ and $E / E^{\prime} \approx$ $\varphi^{*}(E) / \varphi^{*}\left(E^{\prime}\right)$. Thus the diagram reduces the proof to showing that the right-hand $\Phi$, involving the product bundle $D^{n} \times F \rightarrow D^{n}$, is an isomorphism.

Consider the diagram $(*)$ with $\left(B, B^{\prime}\right)$ replaced by $\left(D^{n}, S^{n-1}\right)$. We may assume the right-hand $\Phi$ in $(*)$ is an isomorphism since $S^{n-1}$ has smaller dimension than the original cell complex $B$. The middle $\Phi$ is an isomorphism by the case of zerodimensional $B$ since $D^{n}$ deformation retracts to a point. Therefore by the five-lemma the left-hand $\Phi$ in $(*)$ is an isomorphism for $\left(B, B^{\prime}\right)=\left(D^{n}, S^{n-1}\right)$. This finishes the proof in case (a).

In case (b) let us first prove the result for a product bundle $E=F \times B$. In this case $\Psi$ is just the external product, so we are free to interchange the roles of $F$ and $B$. Thus we may use the diagram $(*)$ with $F$ an arbitrary compact Hausdorff space and $B$ a finite cell complex having all cells of even dimension, obtained by attaching a cell $e^{n}$ to a subcomplex $B^{\prime}$. The upper row of $(*)$ is then an exact sequence since it is obtained from the split short exact sequence $0 \rightarrow K^{*}\left(B, B^{\prime}\right) \rightarrow K^{*}(B) \rightarrow K^{*}\left(B^{\prime}\right) \rightarrow 0$ by tensoring with the fixed group $K^{*}(F)$. If we can show that the left-hand $\Phi$ in $(*)$ is an isomorphism, then by induction on the number of cells of $B$ we may assume the right-hand $\Phi$ is an isomorphism, so the five-lemma will imply that the middle $\Phi$ is also an isomorphism.

To show the left-hand $\Phi$ is an isomorphism, note first that $B / B^{\prime}=S^{n}$ so we may as well take the pair $\left(B, B^{\prime}\right)$ to be $\left(D^{n}, S^{n-1}\right)$. Then the middle $\Phi$ in $(*)$ is obviously an isomorphism, so the left-hand $\Phi$ will be an isomorphism iff the right-hand $\Phi$ is an isomorphism. When the sphere $S^{n-1}$ is even-dimensional we have already shown that $\Phi$ is an isomorphism in the remarks following the proof of Lemma 2.15, and the same argument applies also when the sphere is odd-dimensional, since $K^{1}$ of an odd-dimensional sphere is $K^{0}$ of an even-dimensional sphere.

Now we turn to case (b) for nonproducts. The proof will once again be inductive, but this time we need a more subtle inductive statement since $B$ is just a compact Hausdorff space, not a cell complex. Consider the following condition on a compact subspace $U \subset B$ :

For all compact $V \subset U$ the $\operatorname{map} \Phi: K^{*}(V) \otimes K^{*}(F) \rightarrow K^{*}\left(p^{-1}(V)\right)$ is an isomorphism.

If this is satisfied, let us call $U$ good. By the special case already proved, each point of $B$ has a compact neighborhood $U$ that is good. Since $B$ is compact, a finite number
of these neighborhoods cover $B$, so by induction it will be enough to show that if $U_{1}$ and $U_{2}$ are good, then so is $U_{1} \cup U_{2}$.

A compact $V \subset U_{1} \cup U_{2}$ is the union of $V_{1}=V \cap U_{1}$ and $V_{2}=V \cap U_{2}$. Consider the diagram like $(*)$ for the pair $\left(V, V_{2}\right)$. Since $K^{*}(F)$ is free, the upper row of this diagram is exact. Assuming $U_{2}$ is good, the map $\Phi$ is an isomorphism for $V_{2}$, so $\Phi$ will be an isomorphism for $V$ if it is an isomorphism for $\left(V, V_{2}\right)$. The quotient $V / V_{2}$ is homeomorphic to $V_{1} /\left(V_{1} \cap V_{2}\right)$ so $\Phi$ will be an isomorphism for ( $V, V_{2}$ ) if it is an isomorphism for ( $V_{1}, V_{1} \cap V_{2}$ ). Now look at the diagram like ( $*$ ) for ( $V_{1}, V_{1} \cap V_{2}$ ). Assuming $U_{1}$ is good, the maps $\Phi$ are isomorphisms for $V_{1}$ and $V_{1} \cap V_{2}$. Hence $\Phi$ is an isomorphism for ( $V_{1}, V_{1} \cap V_{2}$ ), and the induction step is finished.

Example 2.24. Let $E \rightarrow X$ be a vector bundle with fibers $\mathbb{C}^{n}$ and compact base $X$. Then we have an associated projective bundle $p: P(E) \rightarrow X$ with fibers $\mathbb{C}{ }^{n-1}$, where $P(E)$ is the space of lines in $E$, that is, one-dimensional linear subspaces of fibers of $E$. Over $P(E)$ there is the canonical line bundle $L \rightarrow P(E)$ consisting of the vectors in the lines of $P(E)$. In each fiber $\mathbb{C P}^{n-1}$ of $P(E)$ the classes $1, L, \cdots, L^{n-1}$ in $K^{*}(P(E))$ restrict to a basis for $K^{*}\left(\mathbb{C} P^{n-1}\right)$ by Proposition 2.22. From the Leray-Hirsch theorem we deduce that $K^{*}(P(E))$ is a free $K^{*}(X)$-module with basis $1, L, \cdots, L^{n-1}$.

Proof of the Splitting Principle: In the preceding example, the fact that 1 is among the basis elements implies that $p^{*}: K^{*}(X) \rightarrow K^{*}(P(E))$ is injective. The pullback bundle $p^{*}(E) \rightarrow P(E)$ contains the line bundle $L$ as a subbundle, hence splits as $L \oplus E^{\prime}$ for $E^{\prime} \rightarrow P(E)$ the subbundle of $p^{*}(E)$ orthogonal to $L$ with respect to some choice of inner product. Now repeat the process by forming $P\left(E^{\prime}\right)$, splitting off another line bundle from the pullback of $E^{\prime}$ over $P\left(E^{\prime}\right)$. Note that $P\left(E^{\prime}\right)$ is the space of pairs of orthogonal lines in fibers of $E$. After a finite number of repetitions we obtain the flag bundle $F(E) \rightarrow X$ described at the end of $\S 1.1$, whose points are $n$-tuples of orthogonal lines in fibers of $E$, where $n$ is the dimension of $E$. (If the fibers of $E$ have different dimensions over different components of $X$, we do the construction for each component separately.) The pullback of $E$ over $F(E)$ splits as a sum of line bundles, and the map $F(E) \rightarrow X$ induces an injection on $K^{*}$ since it is a composition of maps with this property.

In the preceding Example 2.24 we saw that $K^{*}(P(E))$ is free as a $K^{*}(X)$-module, with basis $1, L, \cdots, L^{n-1}$. In order to describe the multiplication in $K^{*}(P(E))$ one therefore needs only a relation expressing $L^{n}$ in terms of lower powers of $L$. Such a relation can be found as follows. The pullback of $E$ over $P(E)$ splits as $L \oplus E^{\prime}$ for some bundle $E^{\prime}$ of dimension $n-1$, and the desired relation will be $\lambda^{n}\left(E^{\prime}\right)=0$. To compute $\lambda^{n}\left(E^{\prime}\right)=0$ we use the formula $\lambda_{t}(E)=\lambda_{t}(L) \lambda_{t}\left(E^{\prime}\right)$ in $K^{*}(P(E))[t]$, where to simplify notation we let ' $E$ ' also denote the pullback of $E$ over $P(E)$. The equation $\lambda_{t}(E)=\lambda_{t}(L) \lambda_{t}\left(E^{\prime}\right)$ can be rewritten as $\lambda_{t}\left(E^{\prime}\right)=\lambda_{t}(E) \lambda_{t}(L)^{-1}$ where $\lambda_{t}(L)^{-1}=$
$\sum_{i}(-1)^{i} L^{i} t^{i}$ since $\lambda_{t}(L)=1+L t$. Equating coefficients of $t^{n}$ in the two sides of $\lambda_{t}\left(E^{\prime}\right)=\lambda_{t}(E) \lambda_{t}(L)^{-1}$, we get $\lambda^{n}\left(E^{\prime}\right)=\sum_{i}(-1)^{n-i} \lambda^{i}(E) L^{n-i}$. The relation $\lambda^{n}\left(E^{\prime}\right)=0$ can be written as $\sum_{i}(-1)^{i} \lambda^{i}(E) L^{n-i}=0$, with the coefficient of $L^{n}$ equal to 1 , as desired. The result can be stated in the following form:

Proposition 2.25. For an n-dimensional vector bundle $E \rightarrow X$ the ring $K(P(E))$ is || isomorphic to the quotient ring $K^{*}(X)[L] /\left(\sum_{i}(-1)^{i} \lambda^{i}(E) L^{n-i}\right)$.

For example when $X$ is a point we have $P(E)=\mathbb{C} \mathrm{P}^{n-1}$ and $\lambda^{i}(E)=\mathbb{C}^{k}$ for $k=\binom{n}{i}$, so the polynomial $\sum_{i}(-1)^{i} \lambda^{i}(E) L^{n-i}$ becomes $(L-1)^{n}$ and we see that the proposition generalizes the isomorphism $\left.K^{*}\left(\mathbb{C} \mathrm{P}^{n-1}\right) \approx \mathbb{Z}[L] /(L-1)^{n}\right)$.

## Appendix: Finite Cell Complexes

As we mentioned in the remarks following Proposition 2.21 it is convenient for purposes of the splitting principle to work with spaces slightly more general than finite CW complexes. By a finite cell complex we mean a space which has a finite filtration $X_{0} \subset X_{1} \subset \cdots \subset X_{k}=X$ where $X_{0}$ is a finite discrete set and $X_{i+1}$ is obtained from $X_{i}$ by attaching a cell $e^{n_{i}}$ via a map $\varphi_{i}: S^{n_{i}-1} \rightarrow X_{i}$. Thus $X_{i+1}$ is the quotient space of the disjoint union of $X_{i}$ and a disk $D^{n_{i}}$ under the identifications $x \sim \varphi_{i}(x)$ for $x \in \partial D^{n_{i}}=S^{n_{i}-1}$.

Proposition 2.26. If $p: E \rightarrow B$ is a fiber bundle whose fiber $F$ and base $B$ are both finite cell complexes, then $E$ is also a finite cell complex, whose cells are products of cells in $B$ with cells in $F$.

Proof: Suppose $B$ is obtained from a subcomplex $B^{\prime}$ by attaching a cell $e^{n}$. By induction on the number of cells of $B$ we may assume that $p^{-1}\left(B^{\prime}\right)$ is a finite cell complex. If $\Phi: D^{n} \rightarrow B$ is a characteristic map for $e^{n}$ then the pullback bundle $\Phi^{*}(E) \rightarrow D^{n}$ is a product since $D^{n}$ is contractible. Since $F$ is a finite cell complex, this means that we may obtain $\Phi^{*}(E)$ from its restriction over $S^{n-1}$ by attaching cells. Hence we may obtain $E$ from $p^{-1}\left(B^{\prime}\right)$ by attaching cells.

## 4. Further Calculations

In this section we give computations of the K-theory of some other interesting spaces.

## The Thom Isomorphism

The relative form of the Leray-Hirsch theorem for disk bundles is a useful technical result known as the Thom isomorphism:

Proposition 2.27. Let $p: E \rightarrow B$ be a fiber bundle with fibers $D^{n}$ and with base $B$ a finite cell complex, and let $E^{\prime} \rightarrow B$ be the sphere subbundle with fibers the boundary spheres of the fibers of $E$. If there is a class $c \in K^{*}\left(E, E^{\prime}\right)$ which restricts to a generator of $K^{*}\left(D^{n}, S^{n}\right) \approx \mathbb{Z}$ in each fiber, then the map $\Phi: K^{*}(B) \rightarrow K^{*}\left(E, E^{\prime}\right)$, $\Phi(b)=p^{*}(b) \cdot c$, is an isomorphism.

The class $c$ is called a Thom class for the bundle. As we will show below, the unit disk bundle in every complex vector bundle has a Thom class.

Proof: Let $\hat{E} \rightarrow B$ be the bundle with fiber $S^{n}$ obtained as a quotient of $E$ by collapsing each fiber of the subbundle $E^{\prime}$ to a point. The union of these points is a copy of $B$ in $\widehat{E}$ forming a section of $\hat{E}$. The long exact sequence for the pair ( $\widehat{E}, B$ ) then splits, giving an isomorphism $K^{*}(\widehat{E}) \approx K^{*}(\widehat{E}, B) \oplus K^{*}(B)$. Under this isomorphism the class $c \in K^{*}\left(E, E^{\prime}\right)=K^{*}(\hat{E}, B)$ corresponds to a class $\hat{c} \in K^{*}(\hat{E})$, which, together with the element $1 \in K^{*}(\hat{E})$, allows us to define the left-hand $\Phi$ in the following commutative diagram, where $*$ is a point.


The Leray-Hirsch theorem implies that the left-hand $\Phi$ is an isomorphism, hence both $\Phi$ 's on the right-hand side of the diagram are isomorphisms as well.

Example 2.28. For a complex vector bundle $E \rightarrow X$ with $X$ compact Hausdorff we will now show how to find a Thom class $U \in \widetilde{K}(D(E), S(E))$, where $D(E)$ and $S(E)$ are the unit disk and sphere bundles in $E$. We can also regard $U$ as an element of $\widetilde{K}(T(E))$ where the Thom space $T(E)$ is the quotient $D(E) / S(E)$. Since $X$ is compact, $T(E)$ can also be described as the one-point compactification of $E$. We may view $T(E)$ as the quotient $P(E \oplus 1) / P(E)$ since in each fiber $\mathbb{C}^{n}$ of $E$ we obtain $P\left(\mathbb{C}^{n} \oplus \mathbb{C}\right)=\mathbb{C} \mathbb{P}^{n}$ from $P\left(\mathbb{C}^{n}\right)=\mathbb{C}{ }^{n-1}$ by attaching the $2 n$-cell $\mathbb{C}^{n} \times\{1\}$, so the quotient $P\left(\mathbb{C}^{n} \oplus \mathbb{C}\right) / P\left(\mathbb{C}^{n}\right)$ is $S^{2 n}$, which is the part of $T(E)$ coming from this fiber $\mathbb{C}^{n}$. From Example 2.24 we know that $K^{*}(P(E \oplus 1))$ is the free $K^{*}(X)$-module with basis $1, L, \cdots, L^{n}$, where $L$ is the canonical line bundle over $P(E \oplus 1)$. Restricting to $P(E) \subset P(E \oplus 1), K^{*}(P(E))$ is the free $K^{*}(X)$-module with basis the restrictions of $1, L, \cdots, L^{n-1}$ to $P(E)$. So we have a short exact sequence

$$
0 \rightarrow \tilde{K}^{*}(T(E)) \longrightarrow K^{*}(P(E \oplus 1)) \xrightarrow{\rho} K^{*}(P(E)) \longrightarrow 0
$$

and Ker $\rho$ must be generated as a $K^{*}(X)$-module by some polynomial of the form $L^{n}+a_{n-1} L^{n-1}+\cdots+a_{0} 1$ with coefficients $a_{i} \in K^{*}(X)$, namely the polynomial $\sum_{i}(-1)^{i} \lambda^{i}(E) L^{n-i}$ in Proposition 2.25, regarded now as an element of $K(P(E \oplus 1))$. The class $U \in \tilde{K}(T(E))$ mapping to $\sum_{i}(-1)^{i} \lambda^{i}(E) L^{n-i}$ is the desired Thom class
since when we restrict over a point of $X$ the preceding considerations still apply, so the kernel of $K\left(\mathbb{C} \mathrm{P}^{n}\right) \rightarrow K\left(\mathbb{C} \mathrm{P}^{n-1}\right)$ is generated by the restriction of $\sum_{i}(-1)^{i} \lambda^{i}(E) L^{n-i}$ to a fiber.
[More applications will be added later: the Gysin Sequence, the Künneth formula, and calculations of the K-theory of various spaces including Grassmann manifolds, flag manifolds, the group $U(n)$, real projective space, and lens spaces.]

## Exercises

1. For a collection of compact Hausdorff spaces $X_{i}$ with basepoints $x_{i}$, let $X$ be the subspace of the product $\prod_{i} X_{i}$ consisting of points with at most one coordinate different from the basepoint. (This is like the wedge sum $\bigvee_{i} X_{i}$ usually considered in algebraic topology, except $X$ has a coarser topology when there are infinitely many $X_{i}$ 's, making it compact since each $X_{i}$ is compact.) Using the fact that $X$ retracts onto each $X_{i}$, define a natural map $\bigoplus_{i} \widetilde{K}^{*}\left(X_{i}\right) \rightarrow \widetilde{K}^{*}(X)$ and show this is an isomorphism. Give an example showing that $K(X)$ need not be finitely generated.
2. For a connected compact Hausdorff space $X$ show that each element of $\widetilde{K}^{*}(X)$ is nilpotent. (See Example 2.6.) Use the preceding exercise with $X_{i}=\mathbb{C} P^{i}, i=1,2, \cdots$, to show that there may not exist a single integer $n$ such that all $n^{\text {th }}$ powers in $\widetilde{K}^{*}(X)$ are trivial.

# Chapter 3 Characteristic Classes 

Characteristic classes are cohomology classes in $H^{*}(B ; R)$ associated to vector bundles $E \rightarrow B$ by some general rule which applies to all base spaces $B$. The four classical types of characteristic classes are:

1. Stiefel-Whitney classes $w_{i}(E) \in H^{i}\left(B ; \mathbb{Z}_{2}\right)$ for a real vector bundle $E$.
2. Chern classes $c_{i}(E) \in H^{2 i}(B ; \mathbb{Z})$ for a complex vector bundle $E$.
3. Pontryagin classes $p_{i}(E) \in H^{4 i}(B ; \mathbb{Z})$ for a real vector bundle $E$.
4. The Euler class $e(E) \in H^{n}(B ; \mathbb{Z})$ when $E$ is an oriented $n$-dimensional real vector bundle.

The Stiefel-Whitney and Chern classes are formally quite similar. Pontryagin classes can be regarded as a refinement of Stiefel-Whitney classes when one takes $\mathbb{Z}$ rather than $\mathbb{Z}_{2}$ coefficients, and the Euler class is a further refinement in the orientable case.

Stiefel-Whitney and Chern classes lend themselves well to axiomatization since in most applications it is the formal properties encoded in the axioms which one uses rather than any particular construction of these classes. The construction we give, using the Leray-Hirsch theorem (proved in §4.D of [AT]), has the virtues of simplicity and elegance, though perhaps at the expense of geometric intuition into what properties of vector bundles these characteristic classes are measuring. There is another definition via obstruction theory which does provide some geometric insights, and this will be described in the Appendix to this chapter.

## 1. Stiefel-Whitney and Chern Classes

Stiefel-Whitney classes are defined for real vector bundles, Chern classes for complex vector bundles. The two cases are quite similar, but for concreteness we shall emphasize the real case, with occasional comments on the minor modifications needed to treat the complex case.

A technical point before we begin: We shall assume without further mention that all base spaces of vector bundles are paracompact, so that the fundamental results of Chapter 1 apply. For the study of characteristic classes this is not an essential
restriction since one can always pass to pullbacks over a CW approximation to a given base space, and CW complexes are paracompact.

## Axioms and Construction

Here is the main result giving axioms for Stiefel-Whitney classes:
Theorem 3.1. There is a unique sequence of functions $w_{1}, w_{2}, \cdots$ assigning to each real vector bundle $E \rightarrow B$ a class $w_{i}(E) \in H^{i}\left(B ; \mathbb{Z}_{2}\right)$, depending only on the isomorphism type of $E$, such that
(a) $w_{i}\left(f^{*}(E)\right)=f^{*}\left(w_{i}(E)\right)$ for a pullback $f^{*}(E)$.
(b) $w\left(E_{1} \oplus E_{2}\right)=w\left(E_{1}\right) \smile w\left(E_{2}\right)$ for $w=1+w_{1}+w_{2}+\cdots \in H^{*}\left(B ; \mathbb{Z}_{2}\right)$.
(c) $w_{i}(E)=0$ if $i>\operatorname{dim} E$.
(d) For the canonical line bundle $E \rightarrow \mathbb{R} \mathrm{P}^{\infty}, w_{1}(E)$ is a generator of $H^{1}\left(\mathbb{R} \mathrm{P}^{\infty} ; \mathbb{Z}_{2}\right)$.

The sum $w(E)=1+w_{1}(E)+w_{2}(E)+\cdots$ is the total Stiefel-Whitney class. Note that (c) implies that the sum $1+w_{1}(E)+w_{2}(E)+\cdots$ has only finitely many nonzero terms, so this sum does indeed lie in $H^{*}\left(B ; \mathbb{Z}_{2}\right)$, the direct sum of the groups $H^{i}\left(B ; \mathbb{Z}_{2}\right)$. From the formal identity

$$
\left(1+w_{1}+w_{2}+\cdots\right)\left(1+w_{1}^{\prime}+w_{2}^{\prime}+\cdots\right)=1+\left(w_{1}+w_{1}^{\prime}\right)+\left(w_{2}+w_{1} w_{1}^{\prime}+w_{2}^{\prime}\right)+\cdots
$$

it follows that the formula $w\left(E_{1} \oplus E_{2}\right)=w\left(E_{1}\right) \smile w\left(E_{2}\right)$ is just a compact way of writing the relations $w_{n}\left(E_{1} \oplus E_{2}\right)=\sum_{i+j=n} w_{i}\left(E_{1}\right) \smile w_{j}\left(E_{2}\right)$, where $w_{0}=1$. This relation is sometimes called the Whitney sum formula.

For complex vector bundles there are analogous Chern classes:
Theorem 3.2. There is a unique sequence of functions $c_{1}, c_{2}, \cdots$ assigning to each complex vector bundle $E \rightarrow B$ a class $c_{i}(E) \in H^{2 i}(B ; \mathbb{Z})$, depending only on the isomorphism type of $E$, such that
(a) $c_{i}\left(f^{*}(E)\right)=f^{*}\left(c_{i}(E)\right)$ for a pullback $f^{*}(E)$.
(b) $c\left(E_{1} \oplus E_{2}\right)=c\left(E_{1}\right) \smile c\left(E_{2}\right)$ for $c=1+c_{1}+c_{2}+\cdots \in H^{*}(B ; \mathbb{Z})$.
(c) $c_{i}(E)=0$ if $i>\operatorname{dim} E$.
(d) For the canonical line bundle $E \rightarrow \mathbb{C} \mathrm{P}^{\infty}, c_{1}(E)$ is a generator of $H^{2}\left(\mathbb{C} \mathrm{P}^{\infty} ; \mathbb{Z}\right)$ specified in advance.

As in the real case, the formula in (b) for the total Chern classes can be rewritten in the form $c_{n}\left(E_{1} \oplus E_{2}\right)=\sum_{i+j=n} c_{i}\left(E_{1}\right) \smile c_{j}\left(E_{2}\right)$, where $c_{0}=1$.

Proof of 3.1 and 3.2: Associated to a vector bundle $\pi: E \rightarrow B$ with fiber $\mathbb{R}^{n}$ is the projective bundle $P(\pi): P(E) \rightarrow B$, where $P(E)$ is the space of all lines through the origin in all the fibers of $E$, and $P(\pi)$ is the natural projection sending each line in $\pi^{-1}(b)$ to $b \in B$. We topologize $P(E)$ as a quotient of the complement of the zero section of $E$, the quotient obtained by factoring out scalar multiplication in each fiber.

Over a neighborhood $U$ in $B$ where $E$ is a product $U \times \mathbb{R}^{n}$, this quotient is $U \times \mathbb{R} \mathrm{P}^{n-1}$, so $P(E)$ is a fiber bundle over $B$ with fiber $\mathbb{R} P^{n-1}$.

We would like to apply the Leray-Hirsch theorem for cohomology with $\mathbb{Z}_{2}$ coefficients to this bundle $P(E) \rightarrow B$. To do this we need classes $x_{i} \in H^{i}\left(P(E) ; \mathbb{Z}_{2}\right)$ restricting to generators of $H^{i}\left(\mathbb{R} P^{n-1} ; \mathbb{Z}_{2}\right)$ in each fiber $\mathbb{R} P^{n-1}$ for $i=0, \cdots, n-1$. Recall from the proof of Theorem 1.8 that there is a map $g: E \rightarrow \mathbb{R}^{\infty}$ that is a linear injection on each fiber. Projectivizing the map $g$ by deleting zero vectors and then factoring out scalar multiplication produces a map $P(g): P(E) \rightarrow \mathbb{R} P^{\infty}$. Let $\alpha$ be a generator of $H^{1}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)$ and let $x=P(g)^{*}(\alpha) \in H^{1}\left(P(E) ; \mathbb{Z}_{2}\right)$. Then the powers $x^{i}$ for $i=0, \cdots, n-1$ are the desired classes $x_{i}$ since a linear injection $\mathbb{R}^{n} \rightarrow \mathbb{R}^{\infty}$ induces an embedding $\mathbb{R} P^{n-1} \hookrightarrow \mathbb{R} P^{\infty}$ for which $\alpha$ pulls back to a generator of $H^{1}\left(\mathbb{R} P^{n-1} ; \mathbb{Z}_{2}\right)$, hence $\alpha^{i}$ pulls back to a generator of $H^{i}\left(\mathbb{R P}^{n-1} ; \mathbb{Z}_{2}\right)$. Note that any two linear injections $\mathbb{R}^{n} \rightarrow \mathbb{R}^{\infty}$ are homotopic through linear injections, so the induced embeddings $\mathbb{R} P^{n-1} \hookrightarrow \mathbb{R} P^{\infty}$ of different fibers of $P(E)$ are all homotopic. We showed in the proof of Theorem 1.8 that any two choices of $g$ are homotopic through maps that are linear injections on fibers, so the classes $x^{i}$ are independent of the choice of $g$.

The Leray-Hirsch theorem then says that $H^{*}\left(P(E) ; \mathbb{Z}_{2}\right)$ is a free $H^{*}\left(B ; \mathbb{Z}_{2}\right)$-module with basis $1, x, \cdots, x^{n-1}$. Consequently, $x^{n}$ can be expressed uniquely as a linear combination of these basis elements with coefficients in $H^{*}\left(B ; \mathbb{Z}_{2}\right)$. Thus there is a unique relation of the form

$$
x^{n}+w_{1}(E) x^{n-1}+\cdots+w_{n}(E) \cdot 1=0
$$

for certain classes $w_{i}(E) \in H^{i}\left(B ; \mathbb{Z}_{2}\right)$. Here $w_{i}(E) x^{i}$ means $P(\pi)^{*}\left(w_{i}(E)\right) \smile x^{i}$, by the definition of the $H^{*}\left(B ; \mathbb{Z}_{2}\right)$-module structure on $H^{*}\left(P(E) ; \mathbb{Z}_{2}\right)$. For completeness we define $w_{i}(E)=0$ for $i>n$ and $w_{0}(E)=1$.

To prove property (a), consider a pullback $f^{*}(E)=E^{\prime}$, fitting into the diagram at the right. If $g: E \rightarrow \mathbb{R}^{\infty}$ is a linear injection on fibers then so is $g \tilde{f}$, and it follows that $P(\tilde{f})^{*}$ takes the canonical class $x=x(E)$ for $P(E)$ to the canonical class $x\left(E^{\prime}\right)$ for $P\left(E^{\prime}\right)$. Then


$$
\begin{aligned}
P(\tilde{f})^{*}\left(\sum_{i} P(\pi)^{*}\left(w_{i}(E)\right) \smile x(E)^{n-i}\right) & =\sum_{i} P(\tilde{f})^{*} P(\pi)^{*}\left(w_{i}(E)\right) \smile P(\tilde{f})^{*}\left(x(E)^{n-i}\right) \\
& =\sum_{i} P\left(\pi^{\prime}\right)^{*} f^{*}\left(w_{i}(E)\right) \smile x\left(E^{\prime}\right)^{n-i}
\end{aligned}
$$

so the relation $x(E)^{n}+w_{1}(E) x(E)^{n-1}+\cdots+w_{n}(E) \cdot 1=0$ defining $w_{i}(E)$ pulls back to the relation $x\left(E^{\prime}\right)^{n}+f^{*}\left(w_{1}(E)\right) x\left(E^{\prime}\right)^{n-1}+\cdots+f^{*}\left(w_{n}(E)\right) \cdot 1=0$ defining $w_{i}\left(E^{\prime}\right)$. By the uniqueness of this relation, $w_{i}\left(E^{\prime}\right)=f^{*}\left(w_{i}(E)\right)$.

Proceeding to property (b), the inclusions of $E_{1}$ and $E_{2}$ into $E_{1} \oplus E_{2}$ give inclusions of $P\left(E_{1}\right)$ and $P\left(E_{2}\right)$ into $P\left(E_{1} \oplus E_{2}\right)$ with $P\left(E_{1}\right) \cap P\left(E_{2}\right)=\varnothing$. Let $U_{1}=$ $P\left(E_{1} \oplus E_{2}\right)-P\left(E_{1}\right)$ and $U_{2}=P\left(E_{1} \oplus E_{2}\right)-P\left(E_{2}\right)$. These are open sets in $P\left(E_{1} \oplus E_{2}\right)$ that deformation retract onto $P\left(E_{2}\right)$ and $P\left(E_{1}\right)$, respectively. A map $g: E_{1} \oplus E_{2} \rightarrow \mathbb{R}^{\infty}$
which is a linear injection on fibers restricts to such a map on $E_{1}$ and $E_{2}$, so the canonical class $x \in H^{1}\left(P\left(E_{1} \oplus E_{2}\right) ; \mathbb{Z}_{2}\right)$ for $E_{1} \oplus E_{2}$ restricts to the canonical classes for $E_{1}$ and $E_{2}$. If $E_{1}$ and $E_{2}$ have dimensions $m$ and $n$, consider the classes $\omega_{1}=$ $\sum_{j} w_{j}\left(E_{1}\right) x^{m-j}$ and $\omega_{2}=\sum_{j} w_{j}\left(E_{2}\right) x^{n-j}$ in $H^{*}\left(P\left(E_{1} \oplus E_{2}\right) ; \mathbb{Z}_{2}\right)$, with cup product $\omega_{1} \omega_{2}=\sum_{j}\left[\sum_{r+s=j} w_{r}\left(E_{1}\right) w_{s}\left(E_{2}\right)\right] x^{m+n-j}$. By the definition of the classes $w_{j}\left(E_{1}\right)$, the class $\omega_{1}$ restricts to zero in $H^{m}\left(P\left(E_{1}\right) ; \mathbb{Z}_{2}\right)$, hence $\omega_{1}$ pulls back to a class in the relative group $H^{m}\left(P\left(E_{1} \oplus E_{2}\right), P\left(E_{1}\right) ; \mathbb{Z}_{2}\right) \approx H^{m}\left(P\left(E_{1} \oplus E_{2}\right), U_{2} ; \mathbb{Z}_{2}\right)$, and similarly for $\omega_{2}$. The following commutative diagram, with $\mathbb{Z}_{2}$ coefficients understood, then shows that $\omega_{1} \omega_{2}=0$ :


Thus $\omega_{1} \omega_{2}=\sum_{j}\left[\sum_{r+s=j} w_{r}\left(E_{1}\right) w_{s}\left(E_{2}\right)\right] x^{m+n-j}=0$ is the defining relation for the Stiefel-Whitney classes of $E_{1} \oplus E_{2}$, and so $w_{j}\left(E_{1} \oplus E_{2}\right)=\sum_{r+s=j} w_{r}\left(E_{1}\right) w_{s}\left(E_{2}\right)$.

Property (c) holds by definition. For (d), recall that the canonical line bundle is $E=\left\{(\ell, v) \in \mathbb{R} \mathrm{P}^{\infty} \times \mathbb{R}^{\infty} \mid v \in \ell\right\}$. The map $P(\pi)$ in this case is the identity. The map $g: E \rightarrow \mathbb{R}^{\infty}$ which is a linear injection on fibers can be taken to be $g(\ell, v)=v$. So $P(g)$ is also the identity, hence $x(E)$ is a generator of $H^{1}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)$. The defining relation $x(E)+w_{1}(E) \cdot 1=0$ then says that $w_{1}(E)$ is a generator of $H^{1}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)$.

The proof of uniqueness of the classes $w_{i}$ will use a general property of vector bundles called the splitting principle:

Proposition 3.3. For each vector bundle $\pi: E \rightarrow B$ there is a space $F(E)$ and a map $p: F(E) \rightarrow B$ such that the pullback $p^{*}(E) \rightarrow F(E)$ splits as a direct sum of line bundles, and $p^{*}: H^{*}\left(B ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(F(E) ; \mathbb{Z}_{2}\right)$ is injective.

Proof: Consider the pullback $P(\pi)^{*}(E)$ of $E$ via the map $P(\pi): P(E) \rightarrow B$. This pullback contains a natural one-dimensional subbundle $L=\{(\ell, v) \in P(E) \times E \mid v \in \ell\}$. An inner product on $E$ pulls back to an inner product on the pullback bundle, so we have a splitting of the pullback as a sum $L \oplus L^{\perp}$ with the orthogonal bundle $L^{\perp}$ having dimension one less than $E$. As we have seen, the Leray-Hirsch theorem applies to $P(E) \rightarrow B$, so $H^{*}\left(P(E) ; \mathbb{Z}_{2}\right)$ is the free $H^{*}\left(B ; \mathbb{Z}_{2}\right)$-module with basis $1, x, \cdots, x^{n-1}$ and in particular the induced map $H^{*}\left(B ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(P(E) ; \mathbb{Z}_{2}\right)$ is injective since one of the basis elements is 1 .

This construction can be repeated with $L^{\perp} \rightarrow P(E)$ in place of $E \rightarrow B$. After finitely many repetitions we obtain the desired result.

Looking at this construction a little more closely, $L^{\perp}$ consists of pairs $(\ell, v) \in$ $P(E) \times E$ with $v \perp \ell$. At the next stage we form $P\left(L^{\perp}\right)$, whose points are pairs ( $\left.\ell, \ell^{\prime}\right)$ where $\ell$ and $\ell^{\prime}$ are orthogonal lines in $E$. Continuing in this way, we see that the
final base space $F(E)$ is the space of all orthogonal splittings $\ell_{1} \oplus \cdots \oplus \ell_{n}$ of fibers of $E$ as sums of lines, and the vector bundle over $F(E)$ consists of all $n$-tuples of vectors in these lines. Alternatively, $F(E)$ can be described as the space of all chains $V_{1} \subset \cdots \subset V_{n}$ of linear subspaces of fibers of $E$ with $\operatorname{dim} V_{i}=i$. Such chains are called flags, and $F(E) \rightarrow B$ is the flag bundle associated to $E$. Note that the description of points of $F(E)$ as flags does not depend on a choice of inner product in $E$.

Now we can finish the proof of Theorem 3.1. Property (d) determines $w_{1}(E)$ for the canonical line bundle $E \rightarrow \mathbb{R} \mathrm{P}^{\infty}$. Property (c) then determines all the $w_{i}$ 's for this bundle. Since the canonical line bundle is the universal line bundle, property (a) therefore determines the classes $w_{i}$ for all line bundles. Property (b) extends this to sums of line bundles, and finally the splitting principle implies that the $w_{i}$ 's are determined for all bundles.

For complex vector bundles we can use the same proof, but with $\mathbb{Z}$ coefficients since $H^{*}\left(\mathbb{C} P^{\infty} ; \mathbb{Z}\right) \approx \mathbb{Z}[\alpha]$, with $\alpha$ now two-dimensional. The defining relation for the $c_{i}(E)$ 's is modified to be

$$
x^{n}-c_{1}(E) x^{n-1}+\cdots+(-1)^{n} c_{n}(E) \cdot 1=0
$$

with alternating signs. This is equivalent to changing the sign of $\alpha$, so it does not affect the proofs of properties (a)-(c), but it has the advantage that the canonical line bundle $E \rightarrow \mathbb{C} \mathrm{P}^{\infty}$ has $c_{1}(E)=\alpha$ rather than $-\alpha$, since the defining relation in this case is $x(E)-c_{1}(E) \cdot 1=0$ and $x(E)=\alpha$.

Note that in property (d) for Stiefel-Whitney classes we could just as well use the canonical line bundle over $\mathbb{R} \mathrm{P}^{1}$ instead of $\mathbb{R} \mathrm{P}^{\infty}$ since the inclusion $\mathbb{R} \mathrm{P}^{1} \hookrightarrow \mathbb{R} \mathrm{P}^{\infty}$ induces an isomorphism $H^{1}\left(\mathbb{R} \mathrm{P}^{\infty} ; \mathbb{Z}_{2}\right) \approx H^{1}\left(\mathbb{R} \mathrm{P}^{1} ; \mathbb{Z}_{2}\right)$. The analogous remark for Chern classes is valid as well.

Example 3.4. Property (a), the naturality of Stiefel-Whitney classes, implies that a product bundle $E=B \times \mathbb{R}^{n}$ has $w_{i}(E)=0$ for $i>0$ since a product is the pullback of a bundle over a point, which must have $w_{i}=0$ for $i>0$ since a point has trivial cohomology in positive dimensions.

Example 3.5: Stability. Property (b) implies that taking the direct sum of a bundle with a product bundle does not change its Stiefel-Whitney classes. In this sense StiefelWhitney classes are stable. For example, the tangent bundle $T S^{n}$ to $S^{n}$ is stably trivial since its direct sum with the normal bundle to $S^{n}$ in $\mathbb{R}^{n+1}$, which is a trivial line bundle, produces a trivial bundle. Hence the Stiefel-Whitney classes $w_{i}\left(T S^{n}\right)$ are zero for $i>0$.

From the identity

$$
\left(1+w_{1}+w_{2}+\cdots\right)\left(1+w_{1}^{\prime}+w_{2}^{\prime}+\cdots\right)=1+\left(w_{1}+w_{1}^{\prime}\right)+\left(w_{2}+w_{1} w_{1}^{\prime}+w_{2}^{\prime}\right)+\cdots
$$

we see that $w\left(E_{1}\right)$ and $w\left(E_{1} \oplus E_{2}\right)$ determine $w\left(E_{2}\right)$ since the equations

$$
\begin{aligned}
& w_{1}+w_{1}^{\prime}=a_{1} \\
& w_{2}+w_{1} w_{1}^{\prime}+w_{2}^{\prime}=a_{2} \\
& \ldots \\
& \sum_{i} w_{n-i} w_{i}^{\prime}=a_{n}
\end{aligned}
$$

can be solved successively for the $w_{i}^{\prime}$ 's in terms of the $w_{i}$ 's and $a_{i}$ 's. In particular, if $E_{1} \oplus E_{2}$ is the trivial bundle, then we have the case that $a_{i}=0$ for $i>0$ and so $w\left(E_{1}\right)$ determines $w\left(E_{2}\right)$ uniquely by explicit formulas that can be worked out. For example, $w_{1}^{\prime}=-w_{1}$ and $w_{2}^{\prime}=-w_{1} w_{1}^{\prime}-w_{2}=w_{1}^{2}-w_{2}$. Of course for $\mathbb{Z}_{2}$ coefficients the signs do not matter, but the same reasoning applies to Chern classes, with $\mathbb{Z}$ coefficients.
Example 3.6. Let us illustrate this principle by showing that there is no bundle $E \rightarrow \mathbb{R} \mathrm{P}^{\infty}$ whose sum with the canonical line bundle $E_{1}\left(\mathbb{R}^{\infty}\right)$ is trivial. For we have $w\left(E_{1}\left(\mathbb{R}^{\infty}\right)\right)=1+\omega$ where $\omega$ is a generator of $H^{1}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)$, and hence $w(E)$ must be $(1+\omega)^{-1}=1+\omega+\omega^{2}+\cdots$ since we are using $\mathbb{Z}_{2}$ coefficients. Thus $w_{i}(E)=\omega^{i}$, which is nonzero in $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)$ for all $i$. However, this contradicts the fact that $w_{i}(E)=0$ for $i>\operatorname{dim} E$.

This shows the necessity of the compactness assumption in Proposition 1.9. To further delineate the question, note that Proposition 1.9 says that the restriction $E_{1}\left(\mathbb{R}^{n+1}\right)$ of the canonical line bundle to the subspace $\mathbb{R} \mathrm{P}^{n} \subset \mathbb{R} \mathrm{P}^{\infty}$ does have an 'inverse' bundle. In fact, the bundle $E_{1}^{\perp}\left(\mathbb{R}^{n+1}\right)$ consisting of pairs $(\ell, v)$ where $\ell$ is a line through the origin in $\mathbb{R}^{n+1}$ and $v$ is a vector orthogonal to $\ell$ is such an inverse. But for any bundle $E \rightarrow \mathbb{R} P^{n}$ whose sum with $E_{1}\left(\mathbb{R}^{n+1}\right)$ is trivial we must have $w(E)=1+\omega+\cdots+\omega^{n}$, and since $w_{n}(E)=\omega^{n} \neq 0$, $E$ must be at least $n$-dimensional. So we see there is no chance of choosing such bundles $E$ for varying $n$ so that they fit together to form a single bundle over $\mathbb{R} P^{\infty}$.

Example 3.7. Let us describe an $n$-dimensional vector bundle $E \rightarrow B$ with $w_{i}(E)$ nonzero for each $i \leq n$. This will be the $n$-fold Cartesian product $\left(E_{1}\right)^{n} \rightarrow\left(G_{1}\right)^{n}$ of the canonical line bundle over $G_{1}=\mathbb{R} \mathrm{P}^{\infty}$ with itself. This vector bundle is the direct sum $\pi_{1}^{*}\left(E_{1}\right) \oplus \cdots \oplus \pi_{n}^{*}\left(E_{1}\right)$ where $\pi_{i}:\left(G_{1}\right)^{n} \rightarrow G_{1}$ is projection onto the $i^{t h}$ factor, so $w\left(\left(E_{1}\right)^{n}\right)=\prod_{i}\left(1+\alpha_{i}\right) \in \mathbb{Z}_{2}\left[\alpha_{1}, \cdots, \alpha_{n}\right] \approx H^{*}\left(\left(\mathbb{R} \mathrm{P}^{\infty}\right)^{n} ; \mathbb{Z}_{2}\right)$. Hence $w_{i}\left(\left(E_{1}\right)^{n}\right)$ is the $i^{t h}$ elementary symmetric polynomial $\sigma_{i}$ in the $\alpha_{j}$ 's, the sum of all the products of $i$ different $\alpha_{j}$ 's. For example, if $n=3$ then $\sigma_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}, \sigma_{2}=\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}$, and $\sigma_{3}=\alpha_{1} \alpha_{2} \alpha_{3}$. Since each $\sigma_{i}$ with $i \leq n$ is nonzero in $\mathbb{Z}_{2}\left[\alpha_{1}, \cdots, \alpha_{n}\right]$, we have an $n$-dimensional bundle whose first $n$ Stiefel-Whitney classes are all nonzero.

The same reasoning applies in the complex case to show that the $n$-fold Cartesian product of the canonical line bundle over $\mathbb{C} \mathrm{P}^{\infty}$ has its first $n$ Chern classes nonzero.

In this example we see that the $w_{i}$ 's and $c_{i}$ 's can be identified with elementary symmetric functions, and in fact this can be done in general using the splitting principle. Given an $n$-dimensional vector bundle $E \rightarrow B$ we know that the pullback to $F(E)$
splits as a sum $L_{1} \oplus \cdots \oplus L_{n} \rightarrow F(E)$. Letting $\alpha_{i}=w_{1}\left(L_{i}\right)$, we see that $w(E)$ pulls back to $w\left(L_{1} \oplus \cdots \oplus L_{n}\right)=\left(1+\alpha_{1}\right) \cdots\left(1+\alpha_{n}\right)=1+\sigma_{1}+\cdots+\sigma_{n}$, so $w_{i}(E)$ pulls back to $\sigma_{i}$. Thus we have embedded $H^{*}\left(B ; \mathbb{Z}_{2}\right)$ in a larger ring $H^{*}\left(F(E) ; \mathbb{Z}_{2}\right)$ such that $w_{i}(E)$ becomes the $i^{t h}$ elementary symmetric polynomial in the elements $\alpha_{1}, \cdots, \alpha_{n}$ of $H^{*}\left(F(E) ; \mathbb{Z}_{2}\right)$.

Besides the evident formal similarity between Stiefel-Whitney and Chern classes there is also a direct relation:

Proposition 3.8. Regarding an $n$-dimensional complex vector bundle $E \rightarrow B$ as a $2 n$-dimensional real vector bundle, then $w_{2 i+1}(E)=0$ and $w_{2 i}(E)$ is the image of $c_{i}(E)$ under the coefficient homomorphism $H^{2 i}(B ; \mathbb{Z}) \rightarrow H^{2 i}\left(B ; \mathbb{Z}_{2}\right)$.

For example, since the canonical complex line bundle over $\mathbb{C} \mathbb{P}^{\infty}$ has $c_{1}$ a generator of $H^{2}\left(\mathbb{C} \mathrm{P}^{\infty} ; \mathbb{Z}\right)$, the same is true for its restriction over $S^{2}=\mathbb{C} \mathrm{P}^{1}$, so by the proposition this 2-dimensional real vector bundle $E \rightarrow S^{2}$ has $w_{2}(E) \neq 0$.

Proof: The bundle $E$ has two projectivizations $\mathbb{R} P(E)$ and $\mathbb{C P}(E)$, consisting of all the real and all the complex lines in fibers of $E$, respectively. There is a natural projection $p: \mathbb{R} P(E) \rightarrow \mathbb{C} P(E)$ sending each real line to the complex line containing it, since a real line is all the real scalar multiples of any nonzero vector in it and a complex line is all the complex scalar multiples. This projection $p$ fits into a commutative diagram

where the left column is the restriction of $p$ to a fiber of $E$ and the maps $\mathbb{R P}(g)$ and $\mathbb{C P}(g)$ are obtained by projectivizing, over $\mathbb{R}$ and $\mathbb{C}$, a map $g: E \rightarrow \mathbb{C}^{\infty}$ which is a $\mathbb{C}$-linear injection on fibers. It is easy to see that all three vertical maps in this diagram are fiber bundles with fiber $\mathbb{R} \mathbb{P}^{1}$, the real lines in a complex line. The Leray-Hirsch theorem applies to the bundle $\mathbb{R} \mathrm{P}^{\infty} \rightarrow \mathbb{C} \mathrm{P}^{\infty}$, with $\mathbb{Z}_{2}$ coefficients, so if $\beta$ is the standard generator of $H^{2}\left(\mathbb{C} \mathrm{P}^{\infty} ; \mathbb{Z}\right)$, the $\mathbb{Z}_{2}$-reduction $\bar{\beta} \in H^{2}\left(\mathbb{C} \mathrm{P}^{\infty} ; \mathbb{Z}_{2}\right)$ pulls back to a generator of $H^{2}\left(\mathbb{R} \mathrm{P}^{\infty} ; \mathbb{Z}_{2}\right)$, namely the square $\alpha^{2}$ of the generator $\alpha \in$ $H^{1}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)$. Hence the $\mathbb{Z}_{2}$-reduction $\bar{x}_{\mathbb{C}}(E)=\mathbb{C P}(g)^{*}(\bar{\beta}) \in H^{2}\left(\mathbb{C P}(E) ; \mathbb{Z}_{2}\right)$ of the basic class $x_{\mathbb{C}}(E)=\mathbb{C} P(g)^{*}(\beta)$ pulls back to the square of the basic class $x_{\mathbb{R}}(E)=$ $\mathbb{R} P(g)^{*}(\alpha) \in H^{1}\left(\mathbb{R} P(E) ; \mathbb{Z}_{2}\right)$. Consequently the $\mathbb{Z}_{2}$-reduction of the defining relation for the Chern classes of $E$, which is $\bar{x}_{\mathbb{C}}(E)^{n}+\bar{c}_{1}(E) \bar{x}_{\mathbb{C}}(E)^{n-1}+\cdots+\bar{c}_{n}(E) \cdot 1=0$, pulls back to the relation $x_{\mathbb{R}}(E)^{2 n}+\bar{c}_{1}(E) x_{\mathbb{R}}(E)^{2 n-2}+\cdots+\bar{c}_{n}(E) \cdot 1=0$, which is the defining relation for the Stiefel-Whitney classes of $E$. This means that $w_{2 i+1}(E)=0$ and $w_{2 i}(E)=\bar{c}_{i}(E)$.

## Cohomology of Grassmannians

From Example 3.7 and naturality it follows that the universal bundle $E_{n} \rightarrow G_{n}$ must also have all its Stiefel-Whitney classes $w_{1}\left(E_{n}\right), \cdots, w_{n}\left(E_{n}\right)$ nonzero. In fact a much stronger statement is true. Let $f:\left(\mathbb{R} P^{\infty}\right)^{n} \rightarrow G_{n}$ be the classifying map for the $n$-fold Cartesion product $\left(E_{1}\right)^{n}$ of the canonical line bundle $E_{1}$, and for notational simplicity let $w_{i}=w_{i}\left(E_{n}\right)$. Then the composition

$$
\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{n}\right] \rightarrow H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right) \xrightarrow{f^{*}} H^{*}\left(\left(\mathbb{R P}^{\infty}\right)^{n} ; \mathbb{Z}_{2}\right) \approx \mathbb{Z}_{2}\left[\alpha_{1}, \cdots, \alpha_{n}\right]
$$

sends $w_{i}$ to $\sigma_{i}$, the $i^{\text {th }}$ elementary symmetric polynomial. It is a classical algebraic result that the polynomials $\sigma_{i}$ are algebraically independent in $\mathbb{Z}_{2}\left[\alpha_{1}, \cdots, \alpha_{n}\right]$. Proofs of this can be found in [van der Waerden, §26] or [Lang, p. 134] for example. Thus the composition $\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{n}\right] \rightarrow \mathbb{Z}_{2}\left[\alpha_{1}, \cdots, \alpha_{n}\right]$ is injective, hence also the map $\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{n}\right] \rightarrow H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right)$. In other words, the classes $w_{i}\left(E_{n}\right)$ generate a polynomial subalgebra $\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{n}\right] \subset H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right)$. This subalgebra is in fact equal to $H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right)$, and the corresponding statement for Chern classes holds as well:
Theorem 3.9. $H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right)$ is the polynomial ring $\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{n}\right]$ on the StiefelWhitney classes $w_{i}=w_{i}\left(E_{n}\right)$ of the universal bundle $E_{n} \rightarrow G_{n}$. Similarly, in the complex case $H^{*}\left(G_{n}\left(\mathbb{C}^{\infty}\right) ; \mathbb{Z}\right) \approx \mathbb{Z}\left[c_{1}, \cdots, c_{n}\right]$ where $c_{i}=c_{i}\left(E_{n}\left(\mathbb{C}^{\infty}\right)\right)$ for the universal bundle $E_{n}\left(\mathbb{C}^{\infty}\right) \rightarrow G_{n}\left(\mathbb{C}^{\infty}\right)$.

The proof we give here for this basic result will be a fairly quick application of the CW structure on $G_{n}$ constructed at the end of $\$ 1.2$. A different proof will be given in $\S 3.3$ where we also compute the cohomology of $G_{n}$ with $\mathbb{Z}$ coefficients, which is somewhat more subtle.
Proof: Consider a map $f:\left(\mathbb{R} P^{\infty}\right)^{n} \rightarrow G_{n}$ which pulls $E_{n}$ back to the bundle $\left(E_{1}\right)^{n}$ considered above. We have noted that the image of $f^{*}$ contains the symmetric polynomials in $\mathbb{Z}_{2}\left[\alpha_{1}, \cdots, \alpha_{n}\right] \approx H^{*}\left(\left(\mathbb{R} P^{\infty}\right)^{n} ; \mathbb{Z}_{2}\right)$. The opposite inclusion holds as well, since if $\pi:\left(\mathbb{R} P^{\infty}\right)^{n} \rightarrow\left(\mathbb{R} P^{\infty}\right)^{n}$ is an arbitrary permutation of the factors, then $\pi$ pulls $\left(E_{1}\right)^{n}$ back to itself, so $f \pi \simeq f$, which means that $f^{*}=\pi^{*} f^{*}$, so the image of $f^{*}$ is invariant under $\pi^{*}: H^{*}\left(\left(\mathbb{R} \mathrm{P}^{\infty}\right)^{n} ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(\left(\mathbb{R} P^{\infty}\right)^{n} ; \mathbb{Z}_{2}\right)$, but the latter map is just the same permutation of the variables $\alpha_{i}$.

To finish the proof in the real case it remains to see that $f^{*}$ is injective. It suffices to find a CW structure on $G_{n}$ in which the $r$-cells are in one-to-one correspondence with monomials $w_{1}^{r_{1}} \cdots w_{n}^{r_{n}}$ of dimension $r=r_{1}+2 r_{2}+\cdots+n r_{n}$, since the number of $r$-cells in a CW complex $X$ is an upper bound on the dimension of $H^{r}\left(X ; \mathbb{Z}_{2}\right)$ as a $\mathbb{Z}_{2}$ vector space, and a surjective linear map between finite-dimensional vector spaces is injective if the dimension of the domain is not greater than the dimension of the range.

Monomials $w_{1}^{r_{1}} \cdots w_{n}^{r_{n}}$ of dimension $r$ correspond to $n$-tuples ( $r_{1}, \cdots, r_{n}$ ) with $r=r_{1}+2 r_{2}+\cdots+n r_{n}$. Such $n$-tuples in turn correspond to partitions of $r$ into at
most $n$ integers, via the correspondence

$$
\left(r_{1}, \cdots, r_{n}\right) \longleftrightarrow r_{n} \leq r_{n}+r_{n-1} \leq \cdots \leq r_{n}+r_{n-1}+\cdots+r_{1}
$$

Such a partition becomes the sequence $\sigma_{1}-1 \leq \sigma_{2}-2 \leq \cdots \leq \sigma_{n}-n$, corresponding to the strictly increasing sequence $0<\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n}$. For example, when $n=3$ we have:

|  | $\left(r_{1}, r_{2}, r_{3}\right)$ | $\left(\sigma_{1}-1, \sigma_{2}-2, \sigma_{3}-3\right)$ | $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ | dimension |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 |
| $w_{1}$ | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 4 |
| $w_{2}$ | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 3 | 4 |
| $w_{1}^{2}$ | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 5 |
| $w_{3}$ | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 |  |
| $w_{1} w_{2}$ | 1 | 1 | 0 | 0 | 1 | 2 | 3 | 4 | 2 |
| $w_{1}^{3}$ | 3 | 0 | 0 | 0 | 0 | 3 | 1 | 3 | 5 |
| 1 | 2 | 6 | 3 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

The cell structure on $G_{n}$ constructed in $\S 1.2$ has one cell of dimension $\left(\sigma_{1}-1\right)+$ $\left(\sigma_{2}-2\right)+\cdots+\left(\sigma_{n}-n\right)$ for each increasing sequence $0<\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n}$. So we are done in the real case.

The complex case is entirely similar, keeping in mind that $c_{i}$ has dimension $2 i$ rather than $i$. The CW structure on $G_{n}\left(\mathbb{C}^{\infty}\right)$ described in $\S 1.2$ also has these extra factors of 2 in the dimensions of its cells. In particular, the cells are all even-dimensional, so the cellular boundary maps for $G_{n}\left(\mathbb{C}^{\infty}\right)$ are all trivial and the cohomology with $\mathbb{Z}$ coefficients consists of a $\mathbb{Z}$ summand for each cell. Injectivity of $f^{*}$ then follows from the algebraic fact that a surjective homomorphism between free abelian groups of finite rank is injective if the rank of the domain is not greater than the rank of the range.

One might guess that the monomial $w_{1}^{r_{1}} \cdots w_{n}^{r_{n}}$ corresponding to a given cell of $G_{n}$ in the way described above was the cohomology class dual to this cell, represented by the cellular cochain assigning the value 1 to the cell and 0 to all the other cells. This is true for the classes $w_{i}$ themselves, but unfortunately it is not true in general. For example the monomial $w_{1}^{i}$ corresponds to the cell whose associated partition is the trivial partition $i=i$, but the cohomology class dual to this cell is $w_{i}^{\prime}$ where $1+w_{1}^{\prime}+w_{2}^{\prime}+\cdots$ is the multiplicative inverse of $1+w_{1}+w_{2}+\cdots$. If one replaces the basis of monomials by the more geometric basis of cohomology classes dual to cells, the formulas for multiplying these dual classes become rather complicated. In the parallel situation of Chern classes this question has very classical roots in algebraic geometry, and the rules for multiplying cohomology classes dual to cells are part of the so-called Schubert calculus. Accessible expositions of this subject from a modern viewpoint can be found in [Fulton] and [Hiller].

## Applications of $w_{1}$ and $c_{1}$

We saw in $\S 1.1$ that the set $\operatorname{Vect}^{1}(X)$ of isomorphism classes of line bundles over $X$ forms a group with respect to tensor product. We know also that $\operatorname{Vect}^{1}(X)=$ $\left[X, G_{1}\left(\mathbb{R}^{\infty}\right)\right]$, and $G_{1}\left(\mathbb{R}^{\infty}\right)$ is just $\mathbb{R} \mathrm{P}^{\infty}$, an Eilenberg-MacLane space $K\left(\mathbb{Z}_{2}, 1\right)$. It is a basic fact in algebraic topology that $[X, K(G, n)] \approx H^{n}(X ; G)$ when $X$ has the homotopy type of a CW complex; see Theorem 4.56 of [AT], for example. Thus one might ask whether the groups $\operatorname{Vect}^{1}(X)$ and $H^{1}\left(X ; \mathbb{Z}_{2}\right)$ are isomorphic. For complex line bundles we have $G_{1}\left(\mathbb{C}^{\infty}\right)=\mathbb{C} \mathbb{P}^{\infty}$, and this is a $K(\mathbb{Z}, 2)$, so the corresponding question is whether $\operatorname{Vect}_{\mathbb{C}}^{1}(X)$ is isomorphic to $H^{2}(X ; \mathbb{Z})$.

Proposition 3.10. The function $w_{1}: \operatorname{Vect}^{1}(X) \rightarrow H^{1}\left(X ; \mathbb{Z}_{2}\right)$ is a homomorphism, and is an isomorphism if $X$ has the homotopy type of a $C W$ complex. The same is also true for $c_{1}: \operatorname{Vect}_{\mathbb{C}}^{1}(X) \rightarrow H^{2}(X ; \mathbb{Z})$.

Proof: The argument is the same in both the real and complex cases, so for definiteness let us describe the complex case. To show that $c_{1}: \operatorname{Vect}_{\mathbb{C}}^{1}(X) \rightarrow H^{2}(X)$ is a homomorphism, we first prove that $c_{1}\left(L_{1} \otimes L_{2}\right)=c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right)$ for the bundle $L_{1} \otimes L_{2} \rightarrow G_{1} \times G_{1}$ where $L_{1}$ and $L_{2}$ are the pullbacks of the canonical line bundle $L \rightarrow G_{1}=\mathbb{C} \mathrm{P}^{\infty}$ under the projections $p_{1}, p_{2}: G_{1} \times G_{1} \rightarrow G_{1}$ onto the two factors. Since $c_{1}(L)$ is the generator $\alpha$ of $H^{2}\left(\mathbb{C} P^{\infty}\right)$, we know that $H^{*}\left(G_{1} \times G_{1}\right) \approx \mathbb{Z}\left[\alpha_{1}, \alpha_{2}\right]$ where $\alpha_{i}=p_{i}^{*}(\alpha)=c_{1}\left(L_{i}\right)$. The inclusion $G_{1} \vee G_{1} \subset G_{1} \times G_{1}$ induces an isomorphism on $H^{2}$, so to compute $c_{1}\left(L_{1} \otimes L_{2}\right)$ it suffices to restrict to $G_{1} \vee G_{1}$. Over the first $G_{1}$ the bundle $L_{2}$ is the trivial line bundle, so the restriction of $L_{1} \otimes L_{2}$ over this $G_{1}$ is $L_{1} \otimes 1 \approx L_{1}$. Similarly, $L_{1} \otimes L_{2}$ restricts to $L_{2}$ over the second $G_{1}$. So $c_{1}\left(L_{1} \otimes L_{2}\right)$ restricted to $G_{1} \vee G_{1}$ is $\alpha_{1}+\alpha_{2}$ restricted to $G_{1} \vee G_{1}$. Hence $c_{1}\left(L_{1} \otimes L_{2}\right)=\alpha_{1}+\alpha_{2}=c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right)$.

The general case of the formula $c_{1}\left(E_{1} \otimes E_{2}\right)=c_{1}\left(E_{1}\right)+c_{1}\left(E_{2}\right)$ for line bundles $E_{1}$ and $E_{2}$ now follows by naturality: We have $E_{1} \approx f_{1}^{*}(L)$ and $E_{2} \approx f_{2}^{*}(L)$ for maps $f_{1}, f_{2}: X \rightarrow G_{1}$. For the map $F=\left(f_{1}, f_{2}\right): X \rightarrow G_{1} \times G_{1}$ we have $F^{*}\left(L_{i}\right)=f_{i}^{*}(L) \approx E_{i}$, so

$$
\begin{aligned}
c_{1}\left(E_{1} \otimes E_{2}\right) & =c_{1}\left(F^{*}\left(L_{1}\right) \otimes F^{*}\left(L_{2}\right)\right)=c_{1}\left(F^{*}\left(L_{1} \otimes L_{2}\right)\right)=F^{*}\left(c_{1}\left(L_{1} \otimes L_{2}\right)\right) \\
& =F^{*}\left(c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right)\right)=F^{*}\left(c_{1}\left(L_{1}\right)\right)+F^{*}\left(c_{1}\left(L_{2}\right)\right) \\
& =c_{1}\left(F^{*}\left(L_{1}\right)\right)+c_{1}\left(F^{*}\left(L_{2}\right)\right)=c_{1}\left(E_{1}\right)+c_{1}\left(E_{2}\right)
\end{aligned}
$$

As noted above, if $X$ is a CW complex, there is a bijection $\left[X, \mathbb{C} \mathrm{P}^{\infty}\right] \approx H^{2}(X ; \mathbb{Z})$, and the more precise statement is that this bijection is given by the map $[f] \mapsto f^{*}(u)$ for some class $u \in H^{2}\left(\mathbb{C} P^{\infty} ; \mathbb{Z}\right)$. The class $u$ must be a generator, otherwise the map would not always be surjective. Which of the two generators we choose for $u$ is not important, so we may take it to be the class $\alpha$. The map $[f] \mapsto f^{*}(\alpha)$ factors as the composition $\left[X, \mathbb{C} \mathrm{P}^{\infty}\right] \rightarrow \operatorname{Vect}_{\mathbb{C}}^{1}(X) \rightarrow H^{2}(X ; \mathbb{Z}),[f] \mapsto f^{*}(L) \mapsto c_{1}\left(f^{*}(L)\right)=$ $f^{*}\left(c_{1}(L)\right)=f^{*}(\alpha)$. The first map in this composition is a bijection, so since the composition is a bijection, the second map $c_{1}$ must be a bijection also.

The first Stiefel-Whitney class $w_{1}$ is closely related to orientability:
|| $\begin{aligned} & \text { Proposition 3.11. A vector bundle } E \rightarrow X \text { is orientable iff } w_{1}(E)=0 \text {, assuming that } \\ & X \text { is homotopy equivalent to a } C W \text { complex. }\end{aligned}$
Thus $w_{1}$ can be viewed as the obstruction to orientability of vector bundles. An interpretation of the other classes $w_{i}$ as obstructions will be given in the Appendix to this chapter.

Proof: Without loss we may assume $X$ is a CW complex. By restricting to pathcomponents we may further assume $X$ is connected. There are natural isomorphisms

$$
\begin{equation*}
H^{1}\left(X ; \mathbb{Z}_{2}\right) \xrightarrow{\approx} \operatorname{Hom}\left(H_{1}(X), \mathbb{Z}_{2}\right) \xrightarrow{\approx} \operatorname{Hom}\left(\pi_{1}(X), \mathbb{Z}_{2}\right) \tag{*}
\end{equation*}
$$

from the universal coefficient theorem and the fact that $H_{1}(X)$ is the abelianization of $\pi_{1}(X)$. When $X=G_{n}$ we have $\pi_{1}\left(G_{n}\right) \approx \mathbb{Z}_{2}$, and $w_{1}\left(E_{n}\right) \in H^{1}\left(G_{n} ; \mathbb{Z}_{2}\right)$ corresponds via $(*)$ to this isomorphism $\pi_{1}\left(G_{n}\right) \approx \mathbb{Z}_{2}$ since $w_{1}\left(E_{n}\right)$ is the unique nontrivial element of $H^{1}\left(G_{n} ; \mathbb{Z}_{2}\right)$. By naturality of $(*)$ it follows that for any map $f: X \rightarrow G_{n}$, $f^{*}\left(w_{1}\left(E_{n}\right)\right)$ corresponds under $(*)$ to the homomorphism $f_{*}: \pi_{1}(X) \rightarrow \pi_{1}\left(G_{n}\right) \approx$ $\mathbb{Z}_{2}$. Thus if we choose $f$ so that $f^{*}\left(E_{n}\right)$ is a given vector bundle $E$, we have $w_{1}(E)$ corresponding under $(*)$ to the induced map $f_{*}: \pi_{1}(X) \rightarrow \pi_{1}\left(G_{n}\right) \approx \mathbb{Z}_{2}$. Hence $w_{1}(E)=0$ iff this $f_{*}$ is trivial, which is exactly the condition for lifting $f$ to the universal cover $\tilde{G}_{n}$, i.e., orientability of $E$.

## 2. The Chern Character

In this section we apply the most basic facts about Chern classes to obtain a direct connection between K-theory and ordinary cohomology. This is then used to study the J-homomorphism, which maps the homotopy groups of orthogonal and unitary groups to the homotopy groups of spheres.

The total Chern class $c=1+c_{1}+c_{2}+\cdots$ takes direct sums to cup products, and the idea of the Chern character is to form an algebraic combination of Chern classes which takes direct sums to sums and tensor products to cup products, thus giving a natural ring homomorphism from K-theory to cohomology. In order to make this work one must use cohomology with rational coefficients, however. The situation might have been simpler if it had been possible to use integer coefficients instead, but on the other hand, the fact that one has rational coefficients instead of integers makes it possible to define a homomorphism $e: \pi_{2 m-1}\left(S^{2 n}\right) \rightarrow \mathbb{Q} / \mathbb{Z}$ which gives some very interesting information about the difficult subject of homotopy groups of spheres.

In order to define the Chern character it suffices, via the splitting principle, to do the case of line bundles. The idea is to define the Chern character $\operatorname{ch}(L)$ for a line
bundle $L \rightarrow X$ to be $\operatorname{ch}(L)=e^{c_{1}(L)}=1+c_{1}(L)+c_{1}(L)^{2} / 2!+\cdots \in H^{*}(X ; \mathbb{Q})$, so that $\operatorname{ch}\left(L_{1} \otimes L_{2}\right)=e^{c_{1}\left(L_{1} \otimes L_{2}\right)}=e^{c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right)}=e^{c_{1}\left(L_{1}\right)} e^{c_{1}\left(L_{2}\right)}=\operatorname{ch}\left(L_{1}\right) \operatorname{ch}\left(L_{2}\right)$. If the sum $1+c_{1}(L)+c_{1}(L)^{2} / 2!+\cdots$ has infinitely many nonzero terms, it will lie not in the direct sum $H^{*}(X ; \mathbb{Q})$ of the groups $H^{n}(X ; \mathbb{Q})$ but rather in the direct product. However, in the examples we shall be considering, $H^{n}(X ; \mathbb{Q})$ will be zero for sufficiently large $n$, so this distinction will not matter.

For a direct sum of line bundles $E \approx L_{1} \oplus \cdots \oplus L_{n}$ we would then want to have

$$
\operatorname{ch}(E)=\sum_{i} \operatorname{ch}\left(L_{i}\right)=\sum_{i} e^{t_{i}}=n+\left(t_{1}+\cdots+t_{n}\right)+\cdots+\left(t_{1}^{k}+\cdots+t_{n}^{k}\right) / k!+\cdots
$$

where $t_{i}=c_{1}\left(L_{i}\right)$. The total Chern class $c(E)$ is then $\left(1+t_{1}\right) \cdots\left(1+t_{n}\right)=1+\sigma_{1}+$ $\cdots+\sigma_{n}$, where $\sigma_{j}=c_{j}(E)$ is the $j^{\text {th }}$ elementary symmetric polynomial in the $t_{i}$ 's, the sum of all products of $j$ distinct $t_{i}$ 's. As we saw in §2.3, the Newton polynomials $s_{k}$ satisfy $t_{1}^{k}+\cdots+t_{n}^{k}=s_{k}\left(\sigma_{1}, \cdots, \sigma_{k}\right)$. Since $\sigma_{j}=c_{j}(E)$, this means that the preceding displayed formula can be rewritten

$$
\operatorname{ch}(E)=\operatorname{dim} E+\sum_{k>0} s_{k}\left(c_{1}(E), \cdots, c_{k}(E)\right) / k!
$$

The right side of this equation is defined for arbitrary vector bundles $E$, so we take this as our general definition of $\operatorname{ch}(E)$.
$\|$ Proposition 3.12. $\operatorname{ch}\left(E_{1} \oplus E_{2}\right)=\operatorname{ch}\left(E_{1}\right)+\operatorname{ch}\left(E_{2}\right)$ and $\operatorname{ch}\left(E_{1} \otimes E_{2}\right)=\operatorname{ch}\left(E_{1}\right) \operatorname{ch}\left(E_{2}\right)$.
Proof: The proof of the splitting principle for ordinary cohomology in Proposition 2.3 works with any coefficients in the case of complex vector bundles, in particular for $\mathbb{Q}$ coefficients. By this splitting principle we can pull $E_{1}$ back to a sum of line bundles over a space $F\left(E_{1}\right)$. By another application of the splitting principle to the pullback of $E_{2}$ over $F\left(E_{1}\right)$, we have a map $F\left(E_{1}, E_{2}\right) \rightarrow X$ pulling both $E_{1}$ and $E_{2}$ back to sums of line bundles, with the induced map $H^{*}(X ; \mathbb{Q}) \rightarrow H^{*}\left(F\left(E_{1}, E_{2}\right) ; \mathbb{Q}\right)$ injective. So to prove the proposition it suffices to verify the two formulas when $E_{1}$ and $E_{2}$ are sums of line bundles, say $E_{i}=\oplus_{j} L_{i j}$ for $i=1,2$. The sum formula holds since $\operatorname{ch}\left(E_{1} \oplus E_{2}\right)=\operatorname{ch}\left(\oplus_{i, j} L_{i j}\right)=\sum_{i, j} e^{c_{1}\left(L_{i j}\right)}=\operatorname{ch}\left(E_{1}\right)+\operatorname{ch}\left(E_{2}\right)$, by the discussion preceding the definition of $c h$. For the product formula, $\operatorname{ch}\left(E_{1} \otimes E_{2}\right)=\operatorname{ch}\left(\oplus_{j, k}\left(L_{1 j} \otimes L_{2 k}\right)\right)=$ $\sum_{j, k} \operatorname{ch}\left(L_{1 j} \otimes L_{2 k}\right)=\sum_{j, k} \operatorname{ch}\left(L_{1 j}\right) \operatorname{ch}\left(L_{2 k}\right)=\operatorname{ch}\left(E_{1}\right) \operatorname{ch}\left(E_{2}\right)$.

In view of this proposition, the Chern character automatically extends to a ring homomorphism $\operatorname{ch}: K(X) \rightarrow H^{*}(X ; \mathbb{Q})$. By naturality there is also a reduced form ch: $\tilde{K}(X) \rightarrow \tilde{H}^{*}(X ; \mathbb{Q})$ since these reduced rings are the kernels of restriction to a point.

As a first calculation of the Chern character, we have:
Proposition 3.13. ch: $\tilde{K}\left(S^{2 n}\right) \rightarrow H^{2 n}\left(S^{2 n} ; \mathbb{Q}\right)$ is injective with image equal to the subgroup $H^{2 n}\left(S^{2 n} ; \mathbb{Z}\right) \subset H^{2 n}\left(S^{2 n} ; \mathbb{Q}\right)$.

Proof: Since $\operatorname{ch}(x \otimes(H-1))=\operatorname{ch}(x) \smile \operatorname{ch}(H-1)$ we have the commutative diagram shown at the right, where the upper map is external tensor product with $H-1$, which is an isomorphism by Bott periodicity, and the lower map is cross product with $\operatorname{ch}(H-1)=\operatorname{ch}(H)-\operatorname{ch}(1)=1+c_{1}(H)-1=c_{1}(H), \mathrm{a}$
 generator of $H^{2}\left(S^{2} ; \mathbb{Z}\right)$. From Theorem 3.16 of [AT] the lower map is an isomorphism and restricts to an isomorphism of the $\mathbb{Z}$-coefficient subgroups. Taking $X=S^{2 n}$, the result now follows by induction on $n$, starting with the trivial case $n=0$.

An interesting by-product of this is:
Corollary 3.14. A class in $H^{2 n}\left(S^{2 n} ; \mathbb{Z}\right)$ occurs as a Chern class $c_{n}(E)$ iff it is divisible by $(n-1)$ !.
Proof: For vector bundles $E \rightarrow S^{2 n}$ we have $c_{1}(E)=\cdots=c_{n-1}(E)=0$, so $\operatorname{ch}(E)=$ $\operatorname{dim} E+s_{n}\left(c_{1}, \cdots, c_{n}\right) / n!=\operatorname{dim} E \pm n c_{n}(E) / n!$ by the recursion relation for $s_{n}$ derived in §2.3, namely, $s_{n}=\sigma_{1} s_{n-1}-\sigma_{2} s_{n-2}+\cdots+(-1)^{n-2} \sigma_{n-1} s_{1}+(-1)^{n-1} n \sigma_{n}$.

Even when $H^{*}(X ; \mathbb{Z})$ is torsionfree, so that $H^{*}(X ; \mathbb{Z})$ is a subring of $H^{*}(X ; \mathbb{Q})$, it is not always true that the image of $c h$ is contained in $H^{*}(X ; \mathbb{Z})$. For example, if $L \in K\left(\mathbb{C} P^{n}\right)$ is the canonical line bundle, then $\operatorname{ch}(L)=1+c+c^{2} / 2+\cdots+c^{n} / n$ ! where $c=c_{1}(L)$ generates $H^{2}\left(\mathbb{C} \mathbb{P}^{n} ; \mathbb{Z}\right)$, hence $c^{k}$ generates $H^{2 k}\left(\mathbb{C} \mathbb{P}^{n} ; \mathbb{Z}\right)$ for $k \leq n$.

The Chern character can be used to show that for finite cell complexes $X$, the only possible differences between the groups $K^{*}(X)$ and $H^{*}(X ; \mathbb{Z})$ lie in their torsion subgroups. Since these are finitely generated abelian groups, this will follow if we can show that $K^{*}(X) \otimes \mathbb{Q}$ and $H^{*}(X ; \mathbb{Q})$ are isomorphic. Thus far we have defined the Chern character $K^{0}(X) \rightarrow H^{\text {even }}(X ; \mathbb{Q})$, and it is easy to extend this formally to odd dimensions by the commutative diagram at the right.


Proposition 3.15. The map $K^{*}(X) \otimes \mathbb{Q} \rightarrow H^{*}(X ; \mathbb{Q})$ induced by the Chern character is an isomorphism for all finite cell complexes $X$.

Proof: We proceed by induction on the number of cells of $X$. The result is trivially true when there is a single cell, a 0 -cell, and it is also true when there are two cells, so that $X$ is a sphere, by the preceding proposition. For the induction step, let $X$ be obtained from a subcomplex $A$ by attaching a cell. Consider the fiveterm sequence $X / A \rightarrow S A \rightarrow S X \rightarrow S X / S A \rightarrow S^{2} A$. Applying the rationalized Chern character $K^{*}(-) \otimes \mathbb{Q} \rightarrow H^{*}(-; \mathbb{Q})$ then gives a commutative diagram of five-term exact sequences since tensoring with $\mathbb{Q}$ preserves exactness. The space $X / A$ is a sphere, and $S X / S A$ is homotopy equivalent to a sphere. Both $S A$ and $S^{2} A$ are homotopy equivalent to cell complexes with the same number of cells as $A$, by collapsing the suspension or double suspension of a 0 -cell. Thus by induction four of the
five maps between the two exact sequences are isomorphisms, all except the map $K^{*}(S X) \otimes \mathbb{Q} \rightarrow H^{*}(S X ; \mathbb{Q})$, so by the five-lemma this map is an isomorphism as well. Finally, to obtain the result for $X$ itself we may replace $X$ by $S^{2} X$ since the Chern character commutes with double suspension, as we have seen, and a double suspension is in particular a single suspension, with the same number of cells, up to homotopy equivalence.

## The J-Homomorphism

Homotopy groups of spheres are notoriously difficult to compute, but some partial information can be gleaned from certain naturally defined homomorphisms

$$
J: \pi_{i}(O(n)) \rightarrow \pi_{n+i}\left(S^{n}\right)
$$

One of the goals of this book is to determine these $J$-homomorphisms in the stable dimension range $n \gg i$ where both domain and range are independent of $n$, according to Proposition 1.14 for $O(n)$ and the Freudenthal suspension theorem [AT] for $S^{n}$. The real form of Bott periodicity proved in Chapter 4 implies that the domain of the stable $J$-homomorphism $\pi_{i}(O) \rightarrow \pi_{i}^{s}$ is nonzero only for $i=4 n-1$ when $\pi_{i}(O)$ is $\mathbb{Z}$ and for $i=8 n$ and $8 n+1$ when $\pi_{i}(O)$ is $\mathbb{Z}_{2}$. In the latter two cases we will show in Chapter 4 that $J$ is injective. When $i=4 n-1$ the image of $J$ is a finite cyclic group of some order $a_{n}$ since $\pi_{i}^{s}$ is a finite group for $i>0$ by a theorem of Serre proved in [SSAT].

The values of $a_{n}$ have been computed in terms of Bernouilli numbers. Here is a table for small values of $n$ :

| $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{n}$ | 24 | 240 | 504 | 480 | 264 | 65520 | 24 | 16320 | 28728 | 13200 | 552 |

In spite of appearances, there is great regularity in this sequence, but this becomes clear only when one looks at the prime factorization of $a_{n}$. Here are the rules for computing $a_{n}$ :

1. The highest power of 2 dividing $a_{n}$ is $2^{\ell+3}$ where $2^{\ell}$ is the highest power of 2 dividing $n$.
2. An odd prime $p$ divides $a_{n}$ iff $n$ is a multiple of $(p-1) / 2$, and in this case the highest power of $p$ dividing $a_{n}$ is $p^{\ell+1}$ where $p^{\ell}$ is the highest power of $p$ dividing $n$.

The first three cases $p=2,3,5$ are shown in the following diagram, where a vertical chain of $k$ connected dots above the number $4 n-1$ means that the highest power of $p$ dividing $a_{n}$ is $p^{k}$.


In the present section we will use the Chern character to show that $a_{n} / 2$ is a lower bound on the order of the image of $J$ in dimension $4 n-1$. Improving this bound to $a_{n}$ will be done in Chapter 4 using real K-theory. In Chapter ?? we will show that $a_{n}$ is also an upper bound for the order.

The simplest definition of the $J$-homomorphism goes as follows. An element $[f] \in \pi_{i}(O(n))$ is represented by a family of isometries $f_{x} \in O(n), x \in S^{i}$, with $f_{x}$ the identity when $x$ is the basepoint of $S^{i}$. Writing $S^{n+i}$ as $\partial\left(D^{i+1} \times D^{n}\right)=S^{i} \times D^{n} \cup$ $D^{i+1} \times S^{n-1}$ and $S^{n}$ as $D^{n} / \partial D^{n}$, let $J f(x, y)=f_{x}(y)$ for $(x, y) \in S^{i} \times D^{n}$ and let $J f\left(D^{i+1} \times S^{n-1}\right)=\partial D^{n}$, the basepoint of $D^{n} / \partial D^{n}$. Clearly $f \simeq g$ implies $J f \simeq J g$, so we have a map $J: \pi_{i}(O(n)) \rightarrow \pi_{n+i}\left(S^{n}\right)$. We will tacitly exclude the trivial case $i=0$.

## $\|$ Proposition 3.16. J is a homomorphism.

Proof: We can view $J f$ as a map $I^{n+i} \rightarrow S^{n}=D^{n} / \partial D^{n}$ which on $S^{i} \times D^{n} \subset I^{n+1}$ is given by $(x, v) \mapsto f_{x}(v)$ and which sends the complement of $S^{i} \times D^{n}$ to the basepoint $\partial D^{n}$. Taking a similar view of $J g$, the sum $J f+J g$ is obtained by juxtaposing these two maps on either side of a hyperplane. We may assume $f_{x}$ is the identity for $x$ in the right half of $S^{i}$ and $g_{x}$ is the identity for $x$ in the left half of $S^{i}$. Then we obtain a homotopy from $J f+J g$ to $J(f+g)$ by moving the two $S^{i} \times D^{n}$, s together until they coincide, as shown in the figure below.


We know that $\pi_{i}(O(n))$ and $\pi_{n+i}\left(S^{n}\right)$ are independent of $n$ for $n>i+1$, so we would expect the J-homomorphism defined above to induce a stable J-homomorphism $J: \pi_{i}(O) \rightarrow \pi_{i}^{s}$, via commutativity of the diagram at the right. We leave it as

$$
\begin{gathered}
\pi_{i}(O(n)) \longrightarrow \pi_{i}(O(n+1)) \\
\downarrow J \vee \downarrow^{J} \\
\pi_{n+i}\left(S^{n}\right) \xrightarrow{S} \pi_{n+i+1}\left(S^{n+1}\right)
\end{gathered}
$$ an exercise for the reader to verify that this is the case.

Composing the stable J-homomorphism with the map $\pi_{i}(U) \rightarrow \pi_{i}(O)$ induced by the natural inclusions $U(n) \subset O(2 n)$ which give an inclusion $U \subset O$, we get the stable complex J-homomorphism $J_{\mathbb{C}}: \pi_{i}(U) \rightarrow \pi_{i}^{s}$. Our goal is to define via K-theory a homomorphism $e: \pi_{i}^{S} \rightarrow \mathbb{Q} / \mathbb{Z}$ for $i$ odd and compute the composition $e J_{\mathbb{C}}: \pi_{i}(U) \rightarrow \mathbb{Q} / \mathbb{Z}$. This will give a lower bound for the order of the image of the real J-homomorphism $\pi_{i}(O) \rightarrow \pi_{i}^{s}$ when $i=4 n-1$.

Now let us define the main object we will be studying in this section, the homomorphism $e: \pi_{2 m-1}\left(S^{2 n}\right) \rightarrow \mathbb{Q} / \mathbb{Z}$. For a map $f: S^{2 m-1} \rightarrow S^{2 n}$ we have the mapping cone $C_{f}$ obtained by attaching a cell $e^{2 m}$ to $S^{2 n}$ by $f$. The quotient $C_{f} / S^{2 n}$ is $S^{2 m}$ so we have a commutative diagram of short exact sequences


There are elements $\alpha, \beta \in \widetilde{K}\left(C_{f}\right)$ mapping from and to the standard generators $(H-1) * \cdots *(H-1)$ of $\widetilde{K}\left(S^{2 m}\right)$ and $\widetilde{K}\left(S^{2 n}\right)$, respectively. In a similar way there are elements $a, b \in \tilde{H}^{*}\left(C_{f} ; \mathbb{Q}\right)$ mapping from and to generators of $H^{2 m}\left(S^{2 m} ; \mathbb{Z}\right)$ and $H^{2 n}\left(S^{2 n} ; \mathbb{Z}\right)$. After perhaps replacing $a$ and $b$ by their negatives we may assume that $\operatorname{ch}(\alpha)=a$ and $\operatorname{ch}(\beta)=b+r a$ for some $r \in \mathbb{Q}$, using Proposition 3.13. The elements $\beta$ and $b$ are not uniquely determined but can be varied by adding any integer multiples of $\alpha$ and $a$. The effect of such a variation on the formula $\operatorname{ch}(\beta)=b+r a$ is to change $r$ by an integer, so $r$ is well-defined in the additive group $\mathbb{Q} / \mathbb{Z}$, and we define $e(f)$ to be this element $r \in \mathbb{Q} / \mathbb{Z}$. Since $f \simeq g$ implies $C_{f} \simeq C_{g}$, we have a well-defined map $e: \pi_{2 n-1}\left(S^{2 m}\right) \rightarrow \mathbb{Q} / \mathbb{Z}$.

## || Proposition 3.17. e is a homomorphism.

Proof: Let $C_{f, g}$ be obtained from $S^{2 n}$ by attaching two $2 m$-cells by $f$ and $g$, so $C_{f, g}$ contains both $C_{f}$ and $C_{g}$. There is a quotient map $q: C_{f+g} \rightarrow C_{f, g}$ collapsing a sphere $S^{2 m-1}$ that separates the $2 m$-cell of $C_{f, g}$ into a pair of $2 m$-cells. In the upper row of the commutative diagram at the right we have generators $\alpha_{f}$ and $\alpha_{g}$ mapping to $\alpha_{f+g}$ and $\beta_{f, g}$ mapping to $\beta_{f+g}$, and similarly in the second row with generators $a_{f}, a_{g}, a_{f+g}, b_{f, g}$, and $b_{f+g}$. By restriction
 to the subspaces $C_{f}$ and $C_{g}$ of $C_{f, g}$ we obtain $\operatorname{ch}\left(\beta_{f, g}\right)=b_{f, g}+r_{f} a_{f}+r_{g} b_{g}$, so $\operatorname{ch}\left(\beta_{f+g}\right)=b_{f+g}+\left(r_{f}+r_{g}\right) a_{f+g}$.

There is a commutative diagram involving the double suspension:


Commutativity follows from the fact that $C_{S^{2} f}=S^{2} C_{f}$ and $c h$ commutes with the double suspension, as we saw in the proof of Proposition 3.9. From the commutativity of the diagram there is induced a stable $e$-invariant $e: \pi_{2 k-1}^{s} \rightarrow \mathbb{Q} / \mathbb{Z}$ for each $k$.

Theorem 3.18. If the map $f: S^{2 k-1} \rightarrow U(n)$ represents a generator of $\pi_{2 k-1}(U)$, then $e\left(J_{\mathbb{C}} f\right)= \pm \beta_{k} / k$ where $\beta_{k}$ is defined via the power series

$$
x /\left(e^{x}-1\right)=\sum_{i} \beta_{i} x^{i} / i!
$$

Hence the image of $J$ in $\pi_{2 k-1}^{s}$ has order divisible by the denominator of $\beta_{k} / k$.
The numbers $\beta_{k}$ are known in number theory as Bernoulli numbers. After proving the theorem we will show how to compute the denominator of $\beta_{k} / k$.

Recall from the beginning of $\S 2.4$ that the Thom space $T(E)$ of a vector bundle $E \rightarrow X$ is defined to be the quotient $D(E) / S(E)$ of the unit disk bundle of $E$ by the unit sphere bundle. Just as in K-theory, the Thom isomorphism for ordinary cohomology can be viewed as an isomorphism $\Phi: H^{*}(X) \approx \tilde{H}^{*}(T(E))$ since the latter group is isomorphic to $H^{*}(D(E), S(E))$. Thom spaces arise in the present context through the following:

Lemma 3.19. $C_{J f}$ is the Thom space of the bundle $E_{f} \rightarrow S^{2 k}$ determined by the clutching function $f: S^{2 k-1} \rightarrow U(n)$.
Proof: By definition, $E_{f}$ is the union of two copies of $D^{2 k} \times \mathbb{C}^{n}$ with the subspaces $\partial D^{2 k} \times \mathbb{C}^{n}$ identified via $(x, v) \sim\left(x, f_{x}(v)\right)$. Collapsing the second copy of $D^{2 k} \times \mathbb{C}^{n}$ to $\mathbb{C}^{n}$ via projection produces the same vector bundle $E_{f}$, so $E_{f}$ can also be obtained from $D^{2 k} \times \mathbb{C}^{n} \amalg \mathbb{C}^{n}$ by the identification $(x, v) \sim f_{x}(v)$ for $x \in \partial D^{2 k}$. Restricting to the unit disk bundle $D\left(E_{f}\right)$, we have $D\left(E_{f}\right)$ expressed as a quotient of $D^{2 k} \times D^{2 n} \amalg$ $D_{0}^{2 n}$ by the same identification relation, where the subscript 0 labels this particular disk fiber of $D\left(E_{f}\right)$. In the quotient $T\left(E_{f}\right)=D\left(E_{f}\right) / S\left(E_{f}\right)$ we then have the sphere $S^{2 n}=D_{0}^{2 n} / \partial D_{0}^{2 n}$, and $T\left(E_{f}\right)$ is obtained from this $S^{2 n}$ by attaching a cell $e^{2 k+2 n}$ with characteristic map the quotient map $D^{2 k} \times D^{2 n} \rightarrow D\left(E_{f}\right) \rightarrow T\left(E_{f}\right)$. The attaching map of this cell is precisely $J f$, since on $\partial D^{2 k} \times D^{2 n}$ it is given by $(x, v) \mapsto f_{x}(v) \in$ $D^{2 n} / \partial D^{2 n}$ and all of $D^{2 k} \times \partial D^{2 n}$ maps to the point $\partial D^{2 n} / \partial D^{2 n}$.

To compute $e J_{\mathbb{C}}(f)$ we need to compute $\operatorname{ch}(\beta)$ where $\beta \in \widetilde{K}\left(C_{J f}\right)=\widetilde{K}\left(T\left(E_{f}\right)\right)$ restricts to a generator of $\tilde{K}\left(S^{2 n}\right)$. Such a $\beta$ is a K-theory Thom class since the $S^{2 n}$ here is $D_{0}^{2 n} / \partial D_{0}^{2 n}$ for a fiber $D_{0}^{2 n}$ of $D\left(E_{f}\right)$. Recall from Example 2.28 how we constructed a Thom class $U \in \widetilde{K}^{*}(T(E))$ for a complex vector bundle $E \rightarrow X$ via the short exact sequence

$$
0 \longrightarrow \widetilde{K}^{*}(T(E)) \longrightarrow K^{*}(P(E \oplus 1)) \xrightarrow{\rho} K^{*}(P(E)) \longrightarrow 0
$$

with $U$ mapping to $\sum_{i}(-1)^{i} \lambda^{i}(E) L^{n-i}$. A similar construction can also be made with ordinary cohomology. The defining relation for $H^{*}(P(E))$ as $H^{*}(X)$-module has
the form $\sum_{i}(-1)^{i} c_{i}(E) x^{n-i}=0$ where $x=x(E) \in H^{2}(P(E))$ restricts to a generator of $H^{2}\left(\mathbb{C} \mathbb{P}^{n-1}\right)$ in each fiber. Viewed as an element of $H^{*}(P(E \oplus 1))$, the element $\sum_{i}(-1)^{i} c_{i}(E) x^{n-i}$, with $x=x(E \oplus 1)$ now, generates the kernel of the map to $H^{*}(P(E))$ since the coefficient of $x^{n}$ is 1 . So $\sum_{i}(-1)^{i} c_{i}(E) x^{n-i} \in H^{*}(P(E \oplus 1))$ is the image of a Thom class $u \in H^{2 n}(T(E))$. For future reference we note two facts:
(1) $x=c_{1}(L) \in H^{*}(P(E \oplus 1))$, since the defining relation for $c_{1}(L)$ is $x(L)-c_{1}(L)=0$ and $P(L)=P(E \oplus 1)$, the bundle $L \rightarrow E \oplus 1$ being a line bundle, so $x(E \oplus 1)=$ $x(L)$.
(2) If we identify $u$ with $\sum_{i}(-1)^{i} c_{i}(E) x^{n-i} \in H^{*}(P(E \oplus 1))$, then $x u=0$ since the defining relation for $H^{*}(P(E \oplus 1))$ is $\sum_{i}(-1)^{i} c_{i}(E \oplus 1) x^{n+1-i}=0$ and $c_{i}(E \oplus 1)=$ $c_{i}(E)$.
For convenience we shall also identify $U$ with $\sum_{i}(-1)^{i} \lambda^{i}(E) L^{n-i} \in K(P(E \oplus 1))$. We are omitting notation for pullbacks, so in particular we are viewing $E$ as already pulled back over $P(E \oplus 1)$. By the splitting principle we can pull this bundle $E$ back further to a sum $\bigoplus_{i} L_{i}$ of line bundles over a space $F(E)$ and work in the cohomology and K-theory of $F(E)$. The Thom class $u=\sum_{i}(-1)^{i} c_{i}(E) x^{n-i}$ then factors as a product $\prod_{i}\left(x-x_{i}\right)$ where $x_{i}=c_{1}\left(L_{i}\right)$, since $c_{i}(E)$ is the $i^{\text {th }}$ elementary symmetric function $\sigma_{i}$ of $x_{1}, \cdots, x_{n}$. Similarly, for the the K-theory Thom class $U$ we have $U=\sum_{i}(-1)^{i} \lambda^{i}(E) L^{n-i}=L^{n} \lambda_{t}(E)=L^{n} \prod_{i} \lambda_{t}\left(L_{i}\right)=L^{n} \prod_{i}\left(1+L_{i} t\right)$ for $t=-L^{-1}$, so $U=\prod_{i}\left(L-L_{i}\right)$. Therefore we have

$$
\operatorname{ch}(U)=\prod_{i} \operatorname{ch}\left(L-L_{i}\right)=\prod_{i}\left(e^{x}-e^{x_{i}}\right)=u \prod_{i}\left[\left(e^{x_{i}}-e^{x}\right) /\left(x_{i}-x\right)\right]
$$

This last expression can be simplified to $u \prod_{i}\left[\left(e^{x_{i}}-1\right) / x_{i}\right]$ since after writing it as $u \prod_{i} e^{x_{i}} \Pi_{i}\left[\left(1-e^{x-x_{i}}\right) /\left(x_{i}-x\right)\right]$ and expanding the last product out as a multivariable power series in $x$ and the $x_{i}$ 's we see that because of the factor $u$ in front and the relation $x u=0$ noted earlier in (2) all the terms containing $x$ can be deleted, or what amounts to the same thing, we can set $x=0$.

Since the Thom isomorphism $\Phi$ for cohomology is given by cup product with the Thom class $u$, the result of the preceding calculation can be written as $\Phi^{-1} \operatorname{ch}(U)=$ $\prod_{i}\left[\left(e^{x_{i}}-1\right) / x_{i}\right]$. When dealing with products such as this it is often convenient to take logarithms. There is a power series for $\log \left[\left(e^{y}-1\right) / y\right]$ of the form $\sum_{j} \alpha_{j} y^{j} / j$ ! since the function $\left(e^{y}-1\right) / y$ has a nonzero value at $y=0$. Then we have

$$
\begin{aligned}
\log \Phi^{-1} \operatorname{ch}(U) & =\log \prod_{i}\left[\left(e^{x_{i}}-1\right) / x_{i}\right]=\sum_{i} \log \left[\left(e^{x_{i}}-1\right) / x_{i}\right]=\sum_{i, j} \alpha_{j} x_{i}^{j} / j! \\
& =\sum_{j} \alpha_{j} c h^{j}(E)
\end{aligned}
$$

where $c h^{j}(E)$ is the component of $\operatorname{ch}(E)$ in dimension $2 j$. Thus we have the general formula $\log \Phi^{-1} c h(U)=\sum_{j} \alpha_{j} c h^{j}(E)$ which no longer involves the splitting of the bundle $E \rightarrow X$ into the line bundles $L_{i}$, so by the splitting principle this formula is valid back in the cohomology of $X$.

Proof of 3.18: Let us specialize the preceding to a bundle $E_{f} \rightarrow S^{2 k}$ with clutching function $f: S^{2 k-1} \rightarrow U(n)$ where the earlier dimension $m$ is replaced now by $k$. As described earlier, the class $\beta \in \tilde{K}\left(C_{J f}\right)=\widetilde{K}\left(T\left(E_{f}\right)\right)$ is the Thom class $U$, up to a sign which we can make +1 by rechoosing $\beta$ if necessary. Since $\operatorname{ch}(U)=\operatorname{ch}(\beta)=b+r a$, we have $\Phi^{-1} \operatorname{ch}(U)=1+r h$ where $h$ is a generator of $H^{2 k}\left(S^{2 k}\right)$. It follows that $\log \Phi^{-1} c h(U)=r h$ since $\log (1+z)=z-z^{2} / 2+\cdots$ and $h^{2}=0$. On the other hand, the general formula $\log \Phi^{-1} c h(U)=\sum_{j} \alpha_{j} c h^{j}(E)$ specializes to $\log \Phi^{-1} c h(U)=$ $\alpha_{k} c h^{k}\left(E_{f}\right)$ in the present case since $\tilde{H}^{2 j}\left(S^{2 k} ; \mathbb{Q}\right)=0$ for $j \neq k$. If $f$ represents a suitable choice of generator of $\pi_{2 k-1}(U(n))$ then $c h^{k}\left(E_{f}\right)=h$ by Proposition 3.13. Comparing the two calculations of $\log \Phi^{-1} c h(U)$, we obtain $r=\alpha_{k}$. Since $e\left(J_{\mathbb{C}} f\right)$ was defined to be $r$, we conclude that $e\left(J_{\mathbb{C}} f\right)=\alpha_{k}$ for $f$ representing a generator of $\pi_{2 k-1}(U(n))$.

To relate $\alpha_{k}$ to Bernoulli numbers $\beta_{k}$ we differentiate both sides of the equation $\sum_{k} \alpha_{k} x^{k} / k!=\log \left[\left(e^{x}-1\right) / x\right]=\log \left(e^{x}-1\right)-\log x$, obtaining

$$
\begin{aligned}
\sum_{k \geq 1} \alpha_{k} x^{k-1} /(k-1)! & =e^{x} /\left(e^{x}-1\right)-x^{-1}=1+\left(e^{x}-1\right)^{-1}-x^{-1} \\
& =1-x^{-1}+\sum_{k \geq 0} \beta_{k} x^{k-1} / k! \\
& =1+\sum_{k \geq 1} \beta_{k} x^{k-1} / k!
\end{aligned}
$$

where the last equality uses the fact that $\beta_{0}=1$, which comes from the formula $x /\left(e^{x}-1\right)=\sum_{i} \beta_{i} x^{i} / i!$. Thus we obtain $\alpha_{k}=\beta_{k} / k$ for $k>1$ and $1+\beta_{1}=\alpha_{1}$. It is not hard to compute that $\beta_{1}=-1 / 2$, so $\alpha_{1}=1 / 2$ and $\alpha_{k}=-\beta_{k} / k$ when $k=1$.

The numbers $\beta_{k}$ are zero for odd $k>1$ since the function $x /\left(e^{x}-1\right)-1+x / 2=$ $\sum_{i \geq 2} \beta_{i} x^{i} / i$ ! is even, as a routine calculation shows. Determining the denominator of $\beta_{k} / k$ for even $k$ is our next goal since this tells us the order of the image of $e J_{\mathbb{C}}$ in these cases.

Theorem 3.20. For even $k>0$ the denominator of $\beta_{k} / k$ is the product of the prime powers $p^{\ell+1}$ such that $p-1$ divides $k$ and $p^{\ell}$ is the highest power of $p$ dividing $k$. More precisely:
(1) The denominator of $\beta_{k}$ is the product of all the distinct primes $p$ such that $p-1$ divides $k$.
(2) A prime divides the denominator of $\beta_{k} / k$ iff it divides the denominator of $\beta_{k}$.

The first step in proving the theorem is to relate Bernoulli numbers to the numbers $S_{k}(n)=1^{k}+2^{k}+\cdots+(n-1)^{k}$.
$\|$ Proposition 3.22. $S_{k}(n)=\sum_{i=0}^{k}\binom{k}{i} \beta_{k-i} n^{i+1} /(i+1)$.
Proof: The function $f(t)=1+e^{t}+e^{2 t}+\cdots+e^{(n-1) t}$ has the power series expansion

$$
\sum_{\ell=0}^{n-1} \sum_{k=0}^{\infty} \ell^{k} t^{k} / k!=\sum_{k=0}^{\infty} S_{k}(n) t^{k} / k!
$$

On the other hand, $f(t)$ can be expressed as the product of $\left(e^{n t}-1\right) / t$ and $t /\left(e^{t}-1\right)$, with power series

$$
\sum_{i=1}^{\infty} n^{i} t^{i-1} / i!\sum_{j=0}^{\infty} \beta_{j} t^{j} / j!=\sum_{i=0}^{\infty} n^{i+1} t^{i} /(i+1)!\sum_{j=0}^{\infty} \beta_{j} t^{j} / j!
$$

Equating the coefficients of $t^{k}$ we get

$$
S_{k}(n) / k!=\sum_{i=0}^{k} n^{i+1} \beta_{k-i} /(i+1)!(k-i)!
$$

Multiplying both sides of this equation by $k$ ! gives the result.
Proof of 3.20: We will be interested in the formula for $S_{k}(n)$ when $n$ is a prime $p$ :

$$
\begin{equation*}
S_{k}(p)=\beta_{k} p+\binom{k}{1} \beta_{k-1} p^{2} / 2+\cdots+\beta_{0} p^{k+1} /(k+1) \tag{*}
\end{equation*}
$$

Let $\mathbb{Z}_{(p)} \subset \mathbb{Q}$ be the ring of $p$-integers, that is, rational numbers whose denominators are relatively prime to $p$. We will first apply $(*)$ to prove that $p \beta_{k}$ is a $p$-integer for all primes $p$. This is equivalent to saying that the denominator of $\beta_{k}$ contains no square factors. By induction on $k$, we may assume $p \beta_{k-i}$ is a $p$-integer for $i>0$. Also, $p^{i} /(i+1)$ is a $p$-integer since $p^{i} \geq i+1$ by induction on $i$. So the product $\beta_{k-i} p^{i+1} /(i+1)$ is a $p$-integer for $i>0$. Thus every term except $\beta_{k} p$ in (*) is a $p$-integer, and hence $\beta_{k} p$ is a $p$-integer as well.

Next we show that for even $k, p \beta_{k} \equiv S_{k}(p) \bmod p$ in $\mathbb{Z}_{(p)}$, that is, the difference $p \beta_{k}-S_{k}(p)$ is $p$ times a $p$-integer. This will also follow from $(*)$ once we see that each term after $\beta_{k} p$ is $p$ times a $p$-integer. For $i>1, p^{i-1} /(i+1)$ is a $p$-integer by induction on $i$ as in the preceding paragraph. Since we know $\beta_{k-i} p$ is a $p$-integer, it follows that each term in $(*)$ containing a $\beta_{k-i}$ with $i>1$ is $p$ times a $p$-integer. As for the term containing $\beta_{k-1}$, this is zero if $k$ is even and greater than 2 . For $k=2$, this term is $2(-1 / 2) p^{2} / 2=-p^{2} / 2$, which is $p$ times a $p$-integer.

Now we assert that $S_{k}(p) \equiv-1 \bmod p$ if $p-1$ divides $k$, while $S_{k}(p) \equiv 0 \bmod p$ in the opposite case. In the first case we have

$$
S_{k}(p)=1^{k}+\cdots+(p-1)^{k} \equiv 1+\cdots+1=p-1 \equiv-1 \bmod p
$$

since the multiplicative group $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p}-\{0\}$ has order $p-1$ and $p-1$ divides $k$. For the second case we use the elementary fact that $\mathbb{Z}_{p}^{*}$ is a cyclic group. (If it were not cyclic, there would exist an exponent $n<p-1$ such that the equation $x^{n}-1$ would have $p-1$ roots in $\mathbb{Z}_{p}$, but a polynomial with coefficients in a field cannot have more roots than its degree.) Let $g$ be a generator of $\mathbb{Z}_{p}^{*}$, so $\left\{1, g^{1}, g^{2}, \cdots, g^{p-2}\right\}=\mathbb{Z}_{p}^{*}$. Then

$$
S_{k}(p)=1^{k}+\cdots+(p-1)^{k}=1^{k}+g^{k}+g^{2 k}+\cdots+g^{(p-2) k}
$$

and hence $\left(g^{k}-1\right) S_{k}(p)=g^{(p-1) k}-1=0$ since $g^{p-1}=1$. If $p-1$ does not divide $k$ then $g^{k} \neq 1$, so we must have $S_{k}(p) \equiv 0 \bmod p$.

Statement (1) of the theorem now follows since if $p-1$ does not divide $k$ then $p \beta_{k} \equiv S_{k}(p) \equiv 0 \bmod p$ so $\beta_{k}$ is $p$-integral, while if $p-1$ does divide $k$ then $p \beta_{k} \equiv$ $S_{k}(p) \equiv-1 \bmod p$ so $\beta_{k}$ is not $p$-integral and $p$ divides the denominator of $\beta_{k}$.

To prove statement (2) of the theorem we will use the following fact:

Lemma 3.23. For all $n \in \mathbb{Z}, n^{k}\left(n^{k}-1\right) \beta_{k} / k$ is an integer.
Proof: Recall the function $f(t)=\left(e^{n t}-1\right) /\left(e^{t}-1\right)$ considered earlier. This has logarithmic derivative
$f^{\prime}(t) / f(t)=(\log f(t))^{\prime}=\left[\log \left(e^{n t}-1\right)-\log \left(e^{t}-1\right)\right]^{\prime}=n e^{n t} /\left(e^{n t}-1\right)-e^{t} /\left(e^{t}-1\right)$
We have

$$
e^{x} /\left(e^{x}-1\right)=1 /\left(1-e^{-x}\right)=x^{-1}\left[-x /\left(e^{-x}-1\right)\right]=\sum_{k=0}^{\infty}(-1)^{k} \beta_{k} x^{k-1} / k!
$$

So

$$
f^{\prime}(t) / f(t)=\sum_{k=1}^{\infty}(-1)^{k}\left(n^{k}-1\right) \beta_{k} t^{k-1} / k!
$$

where the summation starts with $k=1$ since the $k=0$ term is zero. The $(k-1)^{s t}$ derivative of this power series at 0 is $\pm\left(n^{k}-1\right) \beta_{k} / k$. On the other hand, the $(k-1)^{s t}$ derivative of $f^{\prime}(t)(f(t))^{-1}$ is $(f(t))^{-k}$ times a polynomial in $f(t)$ and its derivatives, with integer coefficients, as one can readily see by induction on $k$. From the formula $f(t)=\sum_{k \geq 0} S_{k}(n) t^{k} / k!$ derived earlier, we have $f^{(i)}(0)=S_{i}(n)$, an integer. So the $(k-1)^{s t}$ derivative of $f^{\prime}(t) / f(t)$ at 0 has the form $m / f(0)^{k}=m / n^{k}$ for some $m \in \mathbb{Z}$. Thus $\left(n^{k}-1\right) \beta_{k} / k= \pm m / n^{k}$ and so $n^{k}\left(n^{k}-1\right) \beta_{k} / k$ is an integer.

Statement (2) of the theorem can now be proved. If $p$ divides the denominator of $\beta_{k}$ then obviously $p$ divides the denominator of $\beta_{k} / k$. Conversely, if $p$ does not divide the denominator of $\beta_{k}$, then by statement (1), $p-1$ does not divide $k$. Let $g$ be a generator of $\mathbb{Z}_{p}^{*}$ as before, so $g^{k}$ is not congruent to $1 \bmod p$. Then $p$ does not divide $g^{k}\left(g^{k}-1\right)$, hence $\beta_{k} / k$ is the integer $g^{k}\left(g^{k}-1\right) \beta_{k} / k$ divided by the number $g^{k}\left(g^{k}-1\right)$ which is relatively prime to $p$, so $p$ does not divide the denominator of $\beta_{k} / k$.

The first statement of the theorem follows immediately from (1) and (2).
There is an alternative definition of $e$ purely in terms of K-theory and the operations $\psi^{k}$. by the argument in the proof of Theorem 2.17 there are formulas $\psi^{k}(\alpha)=$ $k^{m} \alpha$ and $\psi^{k}(\beta)=k^{n} \beta+\mu_{k} \alpha$ for some $\mu_{k} \in \mathbb{Z}$ satisfying $\mu_{k} /\left(k^{m}-k^{n}\right)=\mu_{\ell} /\left(\ell^{m}-\ell^{n}\right)$. The rational number $\mu_{k} /\left(k^{m}-k^{n}\right)$ is therefore independent of $k$. It is easy to check that replacing $\beta$ by $\beta+p \alpha$ for $p \in \mathbb{Z}$ adds $p$ to $\mu_{k} /\left(k^{m}-k^{n}\right)$, so $\mu_{k} /\left(k^{m}-k^{n}\right)$ is well-defined in $\mathbb{Q} / \mathbb{Z}$.
$\|$ Proposition 3.24. $e(f)=\mu_{k} /\left(k^{m}-k^{n}\right)$ in $\mathbb{Q} / \mathbb{Z}$.
Proof: This follows by computing $\operatorname{ch} \psi^{k}(\beta)$ in two ways. First, from the formula for $\psi^{k}(\beta)$ we have $\operatorname{ch} \psi^{k}(\beta)=k^{n} \operatorname{ch}(\beta)+\mu_{k} \operatorname{ch}(\alpha)=k^{n} b+\left(k^{n} r+\mu_{k}\right) a$. On the other hand, there is a general formula $c h^{q} \psi^{k}(\xi)=k^{q} c h^{q}(\xi)$ where $c h^{q}$ denotes the component of $c h$ in $H^{2 a}$. To prove this formula it suffices by the splitting principle and additivity to take $\xi$ to be a line bundle, so $\psi^{k}(\xi)=\xi^{k}$, hence

$$
c h^{q} \psi^{k}(\xi)=c h^{q}\left(\xi^{k}\right)=\left[c_{1}\left(\xi^{k}\right)\right]^{q} / q!=\left[k c_{1}(\xi)\right]^{q} / q!=k^{q} c_{1}(\xi)^{q} / q!=k^{q} c h^{q}(\xi)
$$

In the case at hand this says $\operatorname{ch}^{m} \psi^{k}(\beta)=k^{m} c h^{m}(\beta)=k^{m} r a$. Comparing this with the coefficient of $a$ in the first formula for $\operatorname{ch} \psi^{k}(\beta)$ gives $\mu_{k}=r\left(k^{m}-k^{n}\right)$.

## 3. Euler and Pontryagin Classes

A characteristic class can be defined to be a function associating to each vector bundle $E \rightarrow B$ of dimension $n$ a class $x(E) \in H^{k}(B ; G)$, for some fixed $n$ and $k$, such that the naturality property $x\left(f^{*}(E)\right)=f^{*}(x(E))$ is satisfied. In particular, for the universal bundle $E_{n} \rightarrow G_{n}$ there is the class $x=x\left(E_{n}\right) \in H^{k}\left(G_{n} ; G\right)$. Conversely, any element $x \in H^{k}\left(G_{n} ; G\right)$ defines a characteristic class by the rule $x(E)=f^{*}(x)$ where $E \approx f^{*}\left(E_{n}\right)$ for $f: B \rightarrow G_{n}$. Since $f$ is unique up to homotopy, $x(E)$ is well-defined, and it is clear that the naturality property is satisfied. Thus characteristic classes correspond bijectively with cohomology classes of $G_{n}$.

With $\mathbb{Z}_{2}$ coefficients all characteristic classes are simply polynomials in the StiefelWhitney classes since we showed in Theorem 3.9 that $H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right)$ is the polynomial ring $\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{n}\right]$. Similarly for complex vector bundles all characteristic classes with $\mathbb{Z}$ coefficients are polynomials in the Chern classes since $H^{*}\left(G_{n}(\mathbb{C}) ; \mathbb{Z}\right) \approx$ $\mathbb{Z}\left[c_{1}, \cdots, c_{n}\right]$. Our goal in this section is to describe the more refined characteristic classes for real vector bundles that arise when we take cohomology with integer coefficients rather than $\mathbb{Z}_{2}$ coefficients.

The main tool we will use will be the Gysin exact sequence associated to an $n$-dimensional real vector bundle $p: E \rightarrow B$. This is an easy consequence of the Thom isomorphism $\Phi: H^{i}(B) \rightarrow H^{i+n}(D(E), S(E))$ defined by $\Phi(b)=p^{*}(b) \smile c$ for a Thom class $c \in H^{n}(D(E), S(E))$ having the property that its restriction to each fiber is a generator of $H^{n}\left(D^{n}, S^{n-1}\right)$. The map $\Phi$ is an isomorphism whenever a Thom class exists, as shown in Corollary 4D. 9 of [AT]. In $\S 3.2$ we described an easy construction of a Thom class which works for cohomology with $\mathbb{Z}_{2}$ coefficients or for complex vector bundles with $\mathbb{Z}$ coefficients. We will eventually need the somewhat harder fact that Thom classes with $\mathbb{Z}$ coefficients exist for all orientable real vector bundles. This is shown in Theorem 4D. 10 of [AT].

Once one has the Thom isomorphism, this gives the Gysin sequence as the lower row of the following commutative diagram, whose upper row is the exact sequence for the pair $(D(E), S(E))$ :

$$
\begin{aligned}
& \cdots \longrightarrow H^{i}(D(E), S(E)) \xrightarrow{j^{*}} H^{i}(D(E)) \longrightarrow H^{i}(S(E)) \longrightarrow H^{i+1}(D(E), S(E)) \longrightarrow \cdots
\end{aligned}
$$

The vertical map $p^{*}$ is an isomorphism since $p$ is a homotopy equivalence from $D(E)$ to $B$. The Euler class $e \in H^{n}(B)$ is defined to be $\left(p^{*}\right)^{-1} j^{*}(c)$, or in other words the restriction of the Thom class to the zero section of $E$. The square containing the map $\smile e$ commutes since for $b \in H^{i-n}(B)$ we have $j^{*} \Phi(b)=j^{*}\left(p^{*}(b) \smile c\right)=$ $p^{*}(b) \smile j^{*}(c)$, which equals $p^{*}(b \smile e)=p^{*}(b) \smile p^{*}(e)$ since $p^{*}(e)=j^{*}(c)$. The Euler class can also be defined as the class corresponding to $c \smile c$ under the Thom isomorphism, since $\Phi(e)=p^{*}(e) \smile c=j^{*}(c) \smile c=c \smile c$.

As a warm-up application of the Gysin sequence let us use it to give a different proof of Theorem 3.9 computing $H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right)$ and $H^{*}\left(G_{n}(\mathbb{C}) ; \mathbb{Z}\right)$. Consider first the real case. The proof will be by induction on $n$ using the Gysin sequence for the universal bundle $E_{n} \xrightarrow{\pi} G_{n}$. The sphere bundle $S\left(E_{n}\right)$ is the space of pairs ( $v, \ell$ ) where $\ell$ is an $n$-dimensional linear subspace of $\mathbb{R}^{\infty}$ and $v$ is a unit vector in $\ell$. There is a natural map $p: S\left(E_{n}\right) \rightarrow G_{n-1}$ sending ( $v, \ell$ ) to the ( $n-1$ )-dimensional linear subspace $v^{\perp} \subset \ell$ orthogonal to $v$. It is an exercise to check that $p$ is a fiber bundle. Its fiber is $S^{\infty}$, all the unit vectors in $\mathbb{R}^{\infty}$ orthogonal to a given ( $n-1$ )-dimensional subspace. Since $S^{\infty}$ is contractible, $p$ induces an isomorphism on all homotopy groups, hence also on all cohomology groups. Using this isomorphism $p^{*}$ the Gysin sequence, with $\mathbb{Z}_{2}$ coefficients, has the form

$$
\cdots \rightarrow H^{i}\left(G_{n}\right) \xrightarrow{\smile e} H^{i+n}\left(G_{n}\right) \xrightarrow{\eta} H^{i+n}\left(G_{n-1}\right) \rightarrow H^{i+1}\left(G_{n}\right) \rightarrow \cdots
$$

where $e \in H^{n}\left(G_{n} ; \mathbb{Z}_{2}\right)$ is the $\mathbb{Z}_{2}$ Euler class.
We show first that $\eta\left(w_{j}\left(E_{n}\right)\right)=w_{j}\left(E_{n-1}\right)$. By definition the map $\eta$ is the composition $H^{*}\left(G_{n}\right) \rightarrow H^{*}\left(S\left(E_{n}\right)\right) \stackrel{\approx}{\rightleftarrows} H^{*}\left(G_{n-1}\right)$ induced from $G_{n-1} \stackrel{p}{\leftrightarrows} S\left(E_{n}\right) \xrightarrow{\pi} G_{n}$. The pullback $\pi^{*}\left(E_{n}\right)$ consists of triples $(v, w, \ell)$ where $\ell \in G_{n}$ and $v, w \in \ell$ with $v$ a unit vector. This pullback splits naturally as a sum $L \oplus p^{*}\left(E_{n-1}\right)$ where $L$ is the subbundle of triples $(v, t v, \ell), t \in \mathbb{R}$, and $p^{*}\left(E_{n-1}\right)$ consists of the triples $(v, w, \ell)$ with $w \in v^{\perp}$. The line bundle $L$ is trivial, having the section $(v, v, \ell)$. Thus the cohomology homomorphism $\pi^{*}$ takes $\left.w_{j}\left(E_{n}\right)\right)$ to $w_{j}\left(L \oplus p^{*}\left(E_{n-1}\right)\right)=w_{j}\left(p^{*}\left(E_{n-1}\right)\right)=$ $p^{*}\left(w_{j}\left(E_{n-1}\right)\right)$, so $\eta\left(w_{j}\left(E_{n}\right)\right)=w_{j}\left(E_{n-1}\right)$.

By induction on $n, H^{*}\left(G_{n-1}\right)$ is the polynomial ring on the classes $w_{j}\left(E_{n-1}\right)$, $j<n$. The induction can start with the case $n=1$, where $G_{1}=\mathbb{R} \mathrm{P}^{\infty}$ and $H^{*}\left(\mathbb{R} \mathrm{P}^{\infty}\right) \approx$ $\mathbb{Z}_{2}\left[w_{1}\right]$ since $w_{1}\left(E_{1}\right)$ is a generator of $H^{1}\left(\mathbb{R} \mathrm{P}^{\infty} ; \mathbb{Z}_{2}\right)$. Or we could start with the trivial case $n=0$. Since $\eta\left(w_{j}\left(E_{n}\right)\right)=w_{j}\left(E_{n-1}\right)$, the maps $\eta$ are surjective and the Gysin sequence splits into short exact sequences

$$
0 \rightarrow H^{i}\left(G_{n}\right) \xrightarrow{\smile e} H^{i+n}\left(G_{n}\right) \xrightarrow{\eta} H^{i+n}\left(G_{n-1}\right) \rightarrow 0
$$

The image of $\smile e: H^{0}\left(G_{n}\right) \rightarrow H^{n}\left(G_{n}\right)$ is a $\mathbb{Z}_{2}$ generated by $e$. By exactness, this $\mathbb{Z}_{2}$ is the kernel of $\eta: H^{n}\left(G_{n}\right) \rightarrow H^{n}\left(G_{n-1}\right)$. The class $w_{n}\left(E_{n}\right)$ lies in this kernel since $w_{n}\left(E_{n-1}\right)=0$. Moreover, $w_{n}\left(E_{n}\right) \neq 0$, since if $w_{n}\left(E_{n}\right)=0$ then $w_{n}$ is zero for all $n$-dimensional vector bundles, but the bundle $E \rightarrow \mathbb{R} \mathrm{P}^{\infty}$ which is the direct sum of $n$
copies of the canonical line bundle has total Stiefel-Whitney class $w(E)=(1+\alpha)^{n}$, where $\alpha$ generates $H^{1}\left(\mathbb{R} P^{\infty}\right)$, hence $w_{n}(E)=\alpha^{n} \neq 0$. Thus $e$ and $w_{n}\left(E_{n}\right)$ generate the same $\mathbb{Z}_{2}$, so $e=w_{n}\left(E_{n}\right)$.

Now we argue that each element $\xi \in H^{k}\left(G_{n}\right)$ can be expressed as a unique polynomial in the classes $w_{i}=w_{i}\left(E_{n}\right)$, by induction on $k$. First, $\eta(\xi)$ is a unique polynomial $f$ in the $w_{i}\left(E_{n-1}\right)$ 's by the basic induction on $n$. Then $\xi-f\left(w_{1}, \cdots, w_{n-1}\right)$ is in $\operatorname{Ker} \eta=\operatorname{Im}\left(\smile w_{n}\right)$, hence has the form $\zeta \smile w_{n}$ for $\zeta \in H^{k-n}\left(G_{n}\right)$ which is unique since $\checkmark w_{n}$ is injective. By induction on $k, \zeta$ is a unique polynomial $g$ in the $w_{i}$ 's. Thus we have $\xi$ expressed uniquely as a polynomial $f\left(w_{1}, \cdots, w_{n-1}\right)+w_{n} g\left(w_{1}, \cdots, w_{n}\right)$. Since every polynomial in $w_{1}, \cdots, w_{n}$ has a unique expression in this form, the theorem follows in the real case.

Virtually the same argument works in the complex case. We noted earlier that complex vector bundles always have a Gysin sequence with $\mathbb{Z}$ coefficients. The only elaboration needed to extend the preceding proof to the complex case is at the step where we showed the $\mathbb{Z}_{2}$ Euler class is $w_{n}$. The argument from the real case shows that $c_{n}$ is a multiple $m e$ for some $m \in \mathbb{Z}, e$ being now the $\mathbb{Z}$ Euler class. Then for the bundle $E \rightarrow \mathbb{C} P^{\infty}$ which is the direct sum of $n$ copies of the canonical line bundle, classified by $f: \mathbb{C} \mathbb{P}^{\infty} \rightarrow G_{n}\left(\mathbb{C}^{\infty}\right)$, we have $\alpha^{n}=c_{n}(E)=f^{*}\left(c_{n}\right)=m f^{*}(e)$ in $H^{2 n}\left(\mathbb{C P}^{\infty} ; \mathbb{Z}\right) \approx \mathbb{Z}$, with $\alpha^{n}$ a generator, hence $m= \pm 1$ and $e= \pm c_{n}$. The rest of the proof goes through without change.

We can also compute $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}_{2}\right)$ where $\tilde{G}_{n}$ is the oriented Grassmannian. To state the result, let $\pi: \widetilde{G}_{n} \rightarrow G_{n}$ be the covering projection, so $\widetilde{E}_{n}=\pi^{*}\left(E_{n}\right)$, and let $\widetilde{w}_{i}=w_{i}\left(\widetilde{E}_{n}\right)=\pi^{*}\left(w_{i}\right) \in H^{i}\left(\widetilde{G}_{n} ; \mathbb{Z}_{2}\right)$, where $w_{i}=w_{i}\left(E_{n}\right)$.

Proposition 3.25. $\pi^{*}: H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}_{2}\right)$ is surjective with kernel the ideal generated by $w_{1}$, hence $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}_{2}\right) \approx \mathbb{Z}_{2}\left[\widetilde{w}_{2}, \cdots, \widetilde{w}_{n}\right]$.

This is just the answer one would hope for. Since $\widetilde{G}_{n}$ is simply-connected, $\widetilde{w}_{1}$ has to be zero, so the isomorphism $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}_{2}\right) \approx \mathbb{Z}_{2}\left[\widetilde{w}_{2}, \cdots, \widetilde{w}_{n}\right]$ is the simplest thing that could happen.

Proof: The 2 -sheeted covering $\pi: \widetilde{G}_{n} \rightarrow G_{n}$ can be regarded as the unit sphere bundle of a 1 -dimensional vector bundle, so we have a Gysin sequence beginning

$$
0 \rightarrow H^{0}\left(G_{n} ; \mathbb{Z}_{2}\right) \rightarrow H^{0}\left(\tilde{G}_{n} ; \mathbb{Z}_{2}\right) \rightarrow H^{0}\left(G_{n} ; \mathbb{Z}_{2}\right) \xrightarrow{\smile x} H^{1}\left(G_{n} ; \mathbb{Z}_{2}\right)
$$

where $x \in H^{1}\left(G_{n} ; \mathbb{Z}_{2}\right)$ is the $\mathbb{Z}_{2}$-Euler class. Since $\widetilde{G}_{n}$ is connected, $H^{0}\left(\widetilde{G}_{n} ; \mathbb{Z}_{2}\right) \approx$ $\mathbb{Z}_{2}$ and so the map $\checkmark x$ is injective, hence $x=w_{1}$, the only nonzero element of $H^{1}\left(G_{n} ; \mathbb{Z}_{2}\right)$. Since $H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right) \approx \mathbb{Z}_{2}\left[w_{1}, \cdots, w_{n}\right]$, the map $\checkmark w_{1}$ is injective in all dimensions, so the Gysin sequence breaks up into short exact sequences

$$
0 \rightarrow H^{i}\left(G_{n} ; \mathbb{Z}_{2}\right) \xrightarrow{\smile w_{1}} H^{i}\left(G_{n} ; \mathbb{Z}_{2}\right) \xrightarrow{\pi^{*}} H^{i}\left(\widetilde{G}_{n} ; \mathbb{Z}_{2}\right) \rightarrow 0
$$

from which the conclusion is immediate.

The goal for the rest of this section is to determine $H^{*}\left(G_{n} ; \mathbb{Z}\right)$ and $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}\right)$, or in other words, to find all characteristic classes for real vector bundles with $\mathbb{Z}$ coefficients, rather than the $\mathbb{Z}_{2}$ coefficients used for Stiefel-Whitney classes. It turns out that $H^{*}\left(G_{n} ; \mathbb{Z}\right)$, modulo elements of order 2 which are just certain polynomials in Stiefel-Whitney classes, is a polynomial ring $\mathbb{Z}\left[p_{1}, p_{2}, \cdots\right]$ on certain classes $p_{i}$ of dimension $4 i$, called Pontryagin classes. There is a similar statement for $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}\right)$, but with one of the Pontryagin classes replaced by an Euler class when $n$ is even.

## The Euler Class

Recall that the Euler class $e(E) \in H^{n}(B ; \mathbb{Z})$ of an orientable $n$-dimensional vector bundle $E \rightarrow B$ is the restriction of a Thom class $c \in H^{n}(D(E), S(E) ; \mathbb{Z})$ to the zero section, that is, the image of $c$ under the composition

$$
H^{n}(D(E), S(E) ; \mathbb{Z}) \rightarrow H^{n}(D(E) ; \mathbb{Z}) \rightarrow H^{n}(B ; \mathbb{Z})
$$

where the first map is the usual passage from relative to absolute cohomology and the second map is induced by the inclusion $B \hookrightarrow D(E)$ as the zero section. By its definition, $e(E)$ depends on the choice of $c$. However, the assertion (*) in the construction of a Thom class in Theorem 4D. 10 of [AT] implies that $c$ is determined by its restriction to each fiber, and the restriction of $c$ to each fiber is in turn determined by an orientation of the bundle, so in fact $e(E)$ depends only on the choice of an orientation of $E$. Choosing the opposite orientation changes the sign of $c$. There are exactly two choices of orientation for each path-component of $B$.

Here are the basic properties of Euler classes $e(E) \in H^{n}(B ; \mathbb{Z})$ associated to oriented $n$-dimensional vector bundles $E \rightarrow B$ :

## Proposition 3.26.

(a) An orientation of a vector bundle $E \rightarrow B$ induces an orientation of a pullback bundle $f^{*}(E)$ such that $e\left(f^{*}(E)\right)=f^{*}(e(E))$.
(b) Orientations of vector bundles $E_{1} \rightarrow B$ and $E_{2} \rightarrow B$ determine an orientation of the sum $E_{1} \oplus E_{2}$ such that $e\left(E_{1} \oplus E_{2}\right)=e\left(E_{1}\right) \smile e\left(E_{2}\right)$.
(c) For an orientable n-dimensional real vector bundle $E$, the coefficient homomorphism $H^{n}(B ; \mathbb{Z}) \rightarrow H^{n}\left(B ; \mathbb{Z}_{2}\right)$ carries $e(E)$ to $w_{n}(E)$. For an $n$-dimensional complex vector bundle $E$ there is the relation $e(E)=c_{n}(E) \in H^{2 n}(B ; \mathbb{Z})$, for a suitable choice of orientation of $E$.
(d) $e(E)=-e(E)$ if the fibers of $E$ have odd dimension.
(e) $e(E)=0$ if $E$ has a nowhere-zero section.

Proof: (a) For an $n$-dimensional vector bundle $E$, let $E^{\prime} \subset E$ be the complement of the zero section. A Thom class for $E$ can be viewed as an element of $H^{n}\left(E, E^{\prime} ; \mathbb{Z}\right)$
which restricts to a generator of $H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\{0\} ; \mathbb{Z}\right)$ in each fiber $\mathbb{R}^{n}$. For a pullback $f^{*}(E)$, we have a map $\tilde{f}: f^{*}(E) \rightarrow E$ which is a linear isomorphism in each fiber, so $\tilde{f}^{*}(c(E))$ restricts to a generator of $H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\{0\} ; \mathbb{Z}\right)$ in each fiber $\mathbb{R}^{n}$ of $f^{*}(E)$. Thus $\tilde{f}^{*}(c(E))=c\left(f^{*}(E)\right)$. Passing from relative to absolute cohomology classes and then restricting to zero sections, we get $e\left(f^{*}(E)\right)=f^{*}(e(E))$.
(b) There is a natural projection $p_{1}: E_{1} \oplus E_{2} \rightarrow E_{1}$ which is linear in each fiber, and likewise we have $p_{2}: E_{1} \oplus E_{2} \rightarrow E_{2}$. If $E_{1}$ is $m$-dimensional we can view a Thom class $c\left(E_{1}\right)$ as lying in $H^{m}\left(E_{1}, E_{1}^{\prime}\right)$ where $E_{1}^{\prime}$ is the complement of the zero section in $E_{1}$. Similarly we have a Thom class $c\left(E_{2}\right) \in H^{n}\left(E_{2}, E_{2}^{\prime}\right)$ if $E_{2}$ has dimension $n$. Then the product $p_{1}^{*}\left(c\left(E_{1}\right)\right) \smile p_{2}^{*}\left(c\left(E_{2}\right)\right)$ is a Thom class for $E_{1} \oplus E_{2}$ since in each fiber $\mathbb{R}^{m} \times \mathbb{R}^{n}=\mathbb{R}^{m+n}$ we have the cup product

$$
H^{m}\left(\mathbb{R}^{m+n}, \mathbb{R}^{m+n}-\mathbb{R}^{n}\right) \times H^{n}\left(\mathbb{R}^{m+n}, \mathbb{R}^{m+n}-\mathbb{R}^{m}\right) z \rightarrow H^{m+n}\left(\mathbb{R}^{m+n}, \mathbb{R}^{m+n}-\{0\}\right)
$$

which takes generator cross generator to generator by the calculations in Example 3.11 of [AT]. Passing from relative to absolute cohomology and restricting to the zero section, we get the relation $e\left(E_{1} \oplus E_{2}\right)=e\left(E_{1}\right) \smile e\left(E_{2}\right)$.
(c) We showed this for the universal bundle in the calculation of the cohomology of Grassmannians a couple pages back, so by the naturality property in (a) it holds for all bundles.
(d) When we defined the Euler class we observed that it could also be described as the element of $H^{n}(B ; \mathbb{Z})$ corresponding to $c \smile c \in H^{2 n}(D(E), S(E), \mathbb{Z})$ under the Thom isomorphism. If $n$ is odd, the basic commutativity relation for cup products gives $c \smile c=-c \smile c$, so $e(E)=-e(E)$.
(e) A nowhere-zero section of $E$ gives rise to a section $s: B \rightarrow S(E)$ by normalizing vectors to have unit length. Then in the exact sequence

$$
H^{n}(D(E), S(E) ; \mathbb{Z}) \xrightarrow{j^{*}} H^{n}(D(E) ; \mathbb{Z}) \xrightarrow{i^{*}} H^{n}(S(E) ; \mathbb{Z})
$$

the map $i^{*}$ is injective since the composition $D(E) \rightarrow B \xrightarrow{s} S(E) \xrightarrow{i} D(E)$ is homotopic to the identity. Since $i^{*}$ is injective, the map $j^{*}$ is zero by exactness, and hence $e(E)=0$ from the definition of the Euler class.

Consider the tangent bundle $T S^{n}$ to $S^{n}$. This bundle is orientable since its base $S^{n}$ is simply-connected if $n>1$, while if $n=1, T S^{1}$ is just the product $S^{1} \times \mathbb{R}$. When $n$ is odd, $e\left(T S^{n}\right)=0$ either by part (d) of the proposition since $H^{*}\left(S^{n} ; \mathbb{Z}\right)$ has no elements of order two, or by part (e) since there is a nonzero tangent vector field to $S^{n}$ when $n$ is odd, namely $s\left(x_{1}, \cdots, x_{n+1}\right)=\left(-x_{2}, x_{1}, \cdots,-x_{n+1}, x_{n}\right)$. However, when $n$ is even $e\left(T S^{n}\right)$ is nonzero:
$\|$ Proposition 3.27. For even $n, e\left(T S^{n}\right)$ is twice a generator of $H^{n}\left(S^{n} ; \mathbb{Z}\right)$.
Proof: Let $E^{\prime} \subset E=T S^{n}$ be the complement of the zero section. Under the Thom isomorphism the Euler class $e\left(T S^{n}\right)$ corresponds to the square of a Thom class
$c \in H^{n}\left(E, E^{\prime}\right)$, so it suffices to show that $c^{2}$ is twice a generator of $H^{2 n}\left(E, E^{\prime}\right)$. Let $A \subset S^{n} \times S^{n}$ consist of the antipodal pairs $(x,-x)$. Define a homeomorphism $f: S^{n} \times S^{n}-A \rightarrow E$ sending a pair $(x, y) \in S^{n} \times S^{n}-A$ to the vector from $x$ to the point of intersection of the line through $-x$ and $y$ with the tangent plane at $x$. The diagonal $D=\{(x, x)\}$ corresponds under
 $f$ to the zero section of $E$. Excision then gives the first of the following isomorphisms:

$$
H^{*}\left(E, E^{\prime}\right) \approx H^{*}\left(S^{n} \times S^{n}, S^{n} \times S^{n}-D\right) \approx H^{*}\left(S^{n} \times S^{n}, A\right) \approx H^{*}\left(S^{n} \times S^{n}, D\right)
$$

The second isomorphism holds since $S^{n} \times S^{n}-D$ deformation retracts onto $A$ by sliding a point $y \neq \pm x$ along the great circle through $x$ and $y$ to $-x$, and the third comes from the homeomorphism $(x, y) \mapsto(x,-y)$ of $S^{n} \times S^{n}$ interchanging $D$ and $A$. From the long exact sequence of the pair ( $S^{n} \times S^{n}, D$ ) we extract a short exact sequence

$$
0 \rightarrow H^{n}\left(S^{n} \times S^{n}, D\right) \rightarrow H^{n}\left(S^{n} \times S^{n}\right) \rightarrow H^{n}(D) \rightarrow 0
$$

The middle group $H^{n}\left(S^{n} \times S^{n}\right)$ has generators $\alpha, \beta$ which are pullbacks of a generator of $H^{n}\left(S^{n}\right)$ under the two projections $S^{n} \times S^{n} \rightarrow S^{n}$. Both $\alpha$ and $\beta$ restrict to the same generator of $H^{n}(D)$ since the two projections $S^{n} \times S^{n} \rightarrow S^{n}$ restrict to the same homeomorphism $D \approx S^{n}$, so $\alpha-\beta$ generates $H^{n}\left(S^{n} \times S^{n}, D\right)$, the kernel of the restriction map $H^{n}\left(S^{n} \times S^{n}\right) \rightarrow H^{n}(D)$. Thus $\alpha-\beta$ corresponds to the Thom class and $(\alpha-\beta)^{2}=-\alpha \beta-\beta \alpha$, which equals $-2 \alpha \beta$ if $n$ is even. This is twice a generator of $H^{2 n}\left(S^{n} \times S^{n}, D\right) \approx H^{2 n}\left(S^{n} \times S^{n}\right)$.

It is a fairly elementary theorem in differential topology that the Euler class of the unit tangent bundle of a closed, connected, orientable smooth manifold $M^{n}$ is $|\chi(M)|$ times a generator of $H^{n}(M)$, where $\chi(M)$ is the Euler characteristic of $M$; see for example [Milnor-Stasheff]. This agrees with what we have just seen in the case $M=S^{n}$, and is the reason for the name 'Euler class.'

One might ask which elements of $H^{n}\left(S^{n}\right)$ can occur as Euler classes of vector bundles $E \rightarrow S^{n}$ in the nontrivial case that $n$ is even. If we form the pullback of the tangent bundle $T S^{n}$ by a map $S^{n} \rightarrow S^{n}$ of degree $d$, we realize $2 d$ times a generator, by part (a) of the preceding proposition, so all even multiples of a generator of $H^{n}\left(S^{n}\right)$ are realizable. To investigate odd multiples, consider the Thom space $T(E)$. This has integral cohomology consisting of $\mathbb{Z}$ 's in dimensions $0, n$, and $2 n$ by the Thom isomorphism, which also says that the Thom class $c$ is a generator of $H^{n}(T(E))$. We know that the Euler class corresponds under the Thom isomorphism to $c \smile c$, so $e(E)$ is $k$ times a generator of $H^{n}\left(S^{n}\right)$ iff $c \smile c$ is $k$ times a generator of $H^{2 n}(T(E))$. This is precisely the context of the Hopf invariant, and the solution of the Hopf invariant one problem in Chapter 2 shows that $c \smile c$ can be an odd multiple of a generator
only if $n=2,4$, or 8 . In these three cases there is a bundle $E \rightarrow S^{n}$ for which $c \smile c$ is a generator of $H^{2 n}(T(E))$, namely the vector bundle whose unit sphere bundle is the complex, quaternionic, or octonionic Hopf bundle, and whose Thom space, the mapping cone of the sphere bundle, is the associated projective plane $\mathbb{C} \mathrm{P}^{2}$, $\mathfrak{H} \mathrm{P}^{2}$, or $\mathbb{O} \mathrm{P}^{2}$. Since we can realize a generator of $H^{n}\left(S^{n}\right)$ as an Euler class in these three cases, we can realize any multiple of a generator by taking pullbacks as before.

## Pontryagin Classes

The easiest definition of the Pontryagin classes $p_{i}(E) \in H^{4 i}(B ; \mathbb{Z})$ associated to a real vector bundle $E \rightarrow B$ is in terms of Chern classes. For a real vector bundle $E \rightarrow B$, its complexification is the complex vector bundle $E^{\mathbb{C}} \rightarrow B$ obtained from the real vector bundle $E \oplus E$ by defining scalar multiplication by the complex number $i$ in each fiber $\mathbb{R}^{n} \oplus \mathbb{R}^{n}$ via the familiar rule $i(x, y)=(-y, x)$. Thus each fiber $\mathbb{R}^{n}$ of $E$ becomes a fiber $\mathbb{C}^{n}$ of $E^{\mathbb{C}}$. The Pontryagin class $p_{i}(E)$ is then defined to be $(-1)^{i} \mathcal{C}_{2 i}\left(E^{\mathbb{C}}\right) \in H^{4 i}(B ; \mathbb{Z})$. The sign $(-1)^{i}$ is introduced in order to avoid a sign in the formula in (b) of the next proposition. The reason for restricting attention to the even Chern classes $c_{2 i}\left(E^{\mathbb{C}}\right)$ is that the odd classes $c_{2 i+1}\left(E^{\mathbb{C}}\right)$ turn out to be expressible in terms of Stiefel-Whitney classes, and hence give nothing new. The exercises at the end of the section give an explicit formula.

Here is how Pontryagin classes are related to Stiefel-Whitney and Euler classes:

## Proposition 3.28.

(a) For a real vector bundle $E \rightarrow B, p_{i}(E)$ maps to $w_{2 i}(E)^{2}$ under the coefficient homomorphism $H^{4 i}(B ; \mathbb{Z}) \rightarrow H^{4 i}\left(B ; \mathbb{Z}_{2}\right)$.
(b) For an orientable real $2 n$-dimensional vector bundle with Euler class $e(E) \in$ $H^{2 n}(B ; \mathbb{Z}), p_{n}(E)=e(E)^{2}$.

Note that statement (b) is independent of the choice of orientation of $E$ since the Euler class is squared.

Proof: (a) By Proposition 3.4, $c_{2 i}\left(E^{\mathbb{C}}\right)$ reduces $\bmod 2$ to $w_{4 i}(E \oplus E)$, which equals $w_{2 i}(E)^{2}$ since $w(E \oplus E)=w(E)^{2}$ and squaring is an additive homomorphism mod 2 . (b) First we need to determine the relationship between the two orientations of $E^{\mathbb{C}} \approx$ $E \oplus E$, one coming from the canonical orientation of the complex bundle $E^{\mathbb{C}}$, the other coming from the orientation of $E \oplus E$ determined by an orientation of $E$. If $v_{1}, \cdots, v_{2 n}$ is a basis for a fiber of $E$ agreeing with the given orientation, then $E^{\mathbb{C}}$ is oriented by the ordered basis $v_{1}, i v_{1}, \cdots, v_{2 n}, i v_{2 n}$, while $E \oplus E$ is oriented by $v_{1}, \cdots, v_{2 n}, i v_{1}, \cdots, i v_{2 n}$. To make these two orderings agree requires ( $2 n-1$ ) + $(2 n-2)+\cdots+1=2 n(2 n-1) / 2=n(2 n-1)$ transpositions, so the two orientations differ by a sign $(-1)^{n(2 n-1)}=(-1)^{n}$. Thus we have $p_{n}(E)=(-1)^{n} c_{2 n}\left(E^{\mathbb{C}}\right)=$ $(-1)^{n} e\left(E^{\mathbb{C}}\right)=e(E \oplus E)=e(E)^{2}$.

Pontryagin classes can be used to describe the cohomology of $G_{n}$ and $\tilde{G}_{n}$ with $\mathbb{Z}$ coefficients. First let us remark that since $G_{n}$ has a CW structure with finitely many cells in each dimension, so does $\widetilde{G}_{n}$, hence the homology and cohomology groups of $G_{n}$ and $\widetilde{G}_{n}$ are finitely generated. For the universal bundles $E_{n} \rightarrow G_{n}$ and $\widetilde{E}_{n} \rightarrow \widetilde{G}_{n}$ let $p_{i}=p_{i}\left(E_{n}\right), \tilde{p}_{i}=p_{i}\left(\widetilde{E}_{n}\right)$, and $e=e\left(\widetilde{E}_{n}\right)$, the Euler class being defined via the canonical orientation of $\tilde{E}_{n}$.

## Theorem 3.29.

(a) All torsion in $H^{*}\left(G_{n} ; \mathbb{Z}\right)$ consists of elements of order 2 , and $H^{*}\left(G_{n} ; \mathbb{Z}\right) /$ torsion is the polynomial ring $\mathbb{Z}\left[p_{1}, \cdots, p_{k}\right]$ for $n=2 k$ or $2 k+1$.
(b) All torsion in $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}\right)$ consists of elements of order 2 , and $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}\right) /$ torsion is $\mathbb{Z}\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k}\right]$ for $n=2 k+1$ and $\mathbb{Z}\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k-1}, e\right]$ for $n=2 k$, with $e^{2}=\tilde{p}_{k}$ in the latter case.

The torsion subgroup of $H^{*}\left(G_{n} ; \mathbb{Z}\right)$ therefore maps injectively to $H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right)$, with image the image of the Bockstein $\beta: H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right)$, which we shall compute in the course of proving the theorem; for the definition and basic properties of Bockstein homomorphisms see §3.E of [AT]. The same remarks apply to $H^{*}\left(\tilde{G}_{n} ; \mathbb{Z}\right)$. The theorem implies that Stiefel-Whitney and Pontryagin classes determine all characteristic classes for unoriented real vector bundles, while for oriented bundles the only additional class needed is the Euler class.

Proof: We shall work on (b) first since for orientable bundles there is a Gysin sequence with $\mathbb{Z}$ coefficients. As a first step we compute $H^{*}\left(\widetilde{G}_{n} ; R\right)$ where $R=\mathbb{Z}[1 / 2] \subset \mathbb{Q}$, the rational numbers with denominator a power of 2 . Since we are dealing with finitely generated integer homology groups, changing from $\mathbb{Z}$ coefficients to $R$ coefficients eliminates any 2-torsion in the homology, that is, elements of order a power of 2 , and $Z$ summands of homology become $R$ summands. The assertion to be proved is that $H^{*}\left(\tilde{G}_{n} ; R\right)$ is $R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k}\right]$ for $n=2 k+1$ and $R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k-1}, e\right]$ for $n=2 k$. This implies that $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}\right)$ has no odd-order torsion and that $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}\right) /$ torsion is as stated in the theorem. Then it will remain only to show that all 2-torsion in $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}\right)$ consists of elements of order 2.

As in the calculation of $H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right)$ via the Gysin sequence, consider the sphere bundle $S^{n-1} \rightarrow S\left(\widetilde{E}_{n}\right) \xrightarrow{\pi} \widetilde{G}_{n}$, where $S\left(\widetilde{E}_{n}\right)$ is the space of pairs $(v, \ell)$ where $\ell$ is an oriented $n$-dimensional linear subspace of $\mathbb{R}^{\infty}$ and $v$ is a unit vector in $\ell$. The orthogonal complement $v^{\perp} \subset \ell$ of $v$ is then naturally oriented, so we get a projection $p: S\left(\widetilde{E}_{n}\right) \rightarrow \widetilde{G}_{n-1}$. The Gysin sequence with coefficients in $R$ has the form

$$
\cdots \rightarrow H^{i}\left(\tilde{G}_{n}\right) \xrightarrow{\smile e} H^{i+n}\left(\tilde{G}_{n}\right) \xrightarrow{\eta} H^{i+n}\left(\tilde{G}_{n-1}\right) \longrightarrow H^{i+1}\left(\tilde{G}_{n}\right) \longrightarrow \cdots
$$

where $\eta$ takes $\tilde{p}_{i}\left(\widetilde{E}_{n}\right)$ to $\tilde{p}_{i}\left(\widetilde{E}_{n-1}\right)$.

If $n=2 k$, then by induction $H^{*}\left(\widetilde{G}_{n-1}\right) \approx R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k-1}\right]$, so $\eta$ is surjective and the sequence splits into short exact sequences. The proof in this case then follows the $H^{*}\left(G_{n} ; \mathbb{Z}_{2}\right)$ model.

If $n=2 k+1$, then $e$ is zero in $H^{n}\left(\widetilde{G}_{n} ; R\right)$ since with $\mathbb{Z}$ coefficients it has order 2. The Gysin sequence now splits into short exact sequences

$$
0 \longrightarrow H^{i+n}\left(\tilde{G}_{n}\right) \xrightarrow{\eta} H^{i+n}\left(\tilde{G}_{n-1}\right) \longrightarrow H^{i+1}\left(\tilde{G}_{n}\right) \longrightarrow 0
$$

Thus $\eta$ injects $H^{*}\left(\widetilde{G}_{n}\right)$ as a subring of $H^{*}\left(\widetilde{G}_{n-1}\right) \approx R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k-1}, e\right]$, where $e$ now means $e\left(\widetilde{E}_{n-1}\right)$. The subring $\operatorname{Im} \eta$ contains $R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k}\right]$ and is torsionfree, so we can show it equals $R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k}\right]$ by comparing ranks of these $R$-modules in each dimension. Let $r_{j}$ be the rank of $R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k}\right]$ in dimension $j$ and $r_{j}^{\prime}$ the rank of $H^{j}\left(\widetilde{G}_{n}\right)$. Since $R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k-1}, e\right]$ is a free module over $R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k}\right]$ with basis $\{1, e\}$, the rank of $H^{*}\left(\widetilde{G}_{n-1}\right) \approx R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k-1}, e\right]$ in dimension $j$ is $r_{j}+r_{j-2 k}$, the class $e=e\left(\widetilde{E}_{n-1}\right)$ having dimension $2 k$. On the other hand, the exact sequence above says this rank also equals $r_{j}^{\prime}+r_{j-2 k}^{\prime}$. Since $r_{m}^{\prime} \geq r_{m}$ for each $m$, we get $r_{j}^{\prime}=r_{j}$, and so $H^{*}\left(\tilde{G}_{n}\right)=R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k}\right]$, completing the induction step. The induction can start with the case $n=1$, with $\tilde{G}_{1} \approx S^{\infty}$.

Before studying the remaining 2-torsion question let us extend what we have just done to $H^{*}\left(G_{n} ; \mathbb{Z}\right)$, to show that for $R=\mathbb{Z}\left[\frac{1}{2}\right], H^{*}\left(G_{n} ; R\right)$ is $R\left[p_{1}, \cdots, p_{k}\right]$, where $n=2 k$ or $2 k+1$. For the 2 -sheeted covering $\pi: \widetilde{G}_{n} \rightarrow G_{n}$ consider the transfer homomorphism $\pi_{*}: H^{*}\left(\widetilde{G}_{n} ; R\right) \rightarrow H^{*}\left(G_{n} ; R\right)$ defined in §3.G of [AT]. The main feature of $\pi_{*}$ is that the composition $\pi_{*} \pi^{*}: H^{*}\left(G_{n} ; R\right) \rightarrow H^{*}\left(\tilde{G}_{n} ; R\right) \rightarrow H^{*}\left(G_{n} ; R\right)$ is multiplication by 2 , the number of sheets in the covering space. This is an isomorphism for $R=\mathbb{Z}[1 / 2]$, so $\pi^{*}$ is injective. The image of $\pi^{*}$ contains $R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k}\right]$ since $\pi^{*}\left(p_{i}\right)=\tilde{p}_{i}$. So when $n$ is odd, $\pi^{*}$ is an isomorphism and we are done. When $n$ is even, observe that the image of $\pi^{*}$ is invariant under the map $\tau^{*}$ induced by the deck transformation $\tau: \widetilde{G}_{n} \rightarrow \widetilde{G}_{n}$ interchanging sheets of the covering, since $\pi \tau=\pi$ implies $\tau^{*} \pi^{*}=\pi^{*}$. The map $\tau$ reverses orientation in each fiber of $\widetilde{E}_{n} \rightarrow \widetilde{G}_{n}$, so $\tau^{*}$ takes $e$ to $-e$. The subring of $H^{*}\left(\tilde{G}_{n} ; R\right) \approx R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{k-1}, e\right]$ invariant under $\tau^{*}$ is then exactly $R\left[\tilde{p}_{1}, \cdots, \tilde{p}_{[n / 2]}\right]$, finishing the proof that $H^{*}\left(G_{n} ; R\right)=R\left[p_{1}, \cdots, p_{k}\right]$.

To show that all 2-torsion in $H^{*}\left(G_{n} ; \mathbb{Z}\right)$ and $H^{*}\left(\tilde{G}_{n} ; \mathbb{Z}\right)$ has order 2 we use the Bockstein homomorphism $\beta$ associated to the short exact sequence of coefficient groups $0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \rightarrow 0$. The goal is to show that $\operatorname{Ker} \beta / \operatorname{Im} \beta$ consists exactly of the $\bmod 2$ reductions of nontorsion classes in $H^{*}\left(G_{n} ; \mathbb{Z}\right)$ and $H^{*}\left(\widetilde{G}_{n} ; \mathbb{Z}\right)$, that is, polynomials in the classes $w_{2 i}^{2}$ in the case of $G_{n}$ and $\tilde{G}_{2 k+1}$, and for $\tilde{G}_{2 k}$, polynomials in the $w_{2 i}^{2}$ 's for $i<k$ together with $w_{2 k}$, the mod 2 reduction of the Euler class. By general properties of Bockstein homomorphisms proved in §3.E of [AT] this will finish the proof.
$\|$ Lemma 3.30. $\beta w_{2 i+1}=w_{1} w_{2 i+1}$ and $\beta w_{2 i}=w_{2 i+1}+w_{1} w_{2 i}$.

Proof: By naturality it suffices to prove this for the universal bundle $E_{n} \rightarrow G_{n}$ with $w_{i}=w_{i}\left(E_{n}\right)$. As observed in §3.1, we can view $w_{k}$ as the $k^{t h}$ elementary symmetric polynomial $\sigma_{k}$ in the polynomial algebra $\mathbb{Z}_{2}\left[\alpha_{1}, \cdots, \alpha_{n}\right] \approx H^{*}\left(\left(\mathbb{R} P^{\infty}\right)^{n} ; \mathbb{Z}_{2}\right)$. Thus to compute $\beta w_{k}$ we can compute $\beta \sigma_{k}$. Using the derivation property $\beta(x \smile y)=$ $\beta x \smile y+x \smile \beta y$ and the fact that $\beta \alpha_{i}=\alpha_{i}^{2}$, we see that $\beta \sigma_{k}$ is the sum of all products $\alpha_{i 1} \cdots \alpha_{i j}^{2} \cdots \alpha_{i k}$ for $i_{1}<\cdots<i_{k}$ and $j=1, \cdots, k$. On the other hand, multiplying $\sigma_{1} \sigma_{k}$ out, one obtains $\beta \sigma_{k}+(k+1) \sigma_{k+1}$.

Now for the calculation of $\operatorname{Ker} \beta / \operatorname{Im} \beta$. First consider the case of $G_{2 k+1}$. The ring $\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{2 k+1}\right]$ is also the polynomial ring $\mathbb{Z}_{2}\left[w_{1}, w_{2}, \beta w_{2}, \cdots, w_{2 k}, \beta w_{2 k}\right]$ since the substitution $w_{1} \mapsto w_{1}, w_{2 i} \mapsto w_{2 i}, w_{2 i+1} \mapsto w_{2 i+1}+w_{1} w_{2 i}=\beta w_{2 i}$ for $i>0$ is invertible, being its own inverse in fact. Thus $\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{2 k+1}\right]$ splits as the tensor product of the polynomial rings $\mathbb{Z}_{2}\left[w_{1}\right]$ and $\mathbb{Z}_{2}\left[w_{2 i}, \beta w_{2 i}\right]$, each of which is invariant under $\beta$. Moreover, viewing $\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{2 k+1}\right]$ as a chain complex with boundary map $\beta$, this tensor product is a tensor product of chain complexes. According to the algebraic Künneth theorem, the homology of $\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{2 k+1}\right]$ with respect to the boundary map $\beta$ is therefore the tensor product of the homologies of the chain complexes $\mathbb{Z}_{2}\left[w_{1}\right]$ and $\mathbb{Z}_{2}\left[w_{2 i}, \beta w_{2 i}\right]$.

For $\mathbb{Z}_{2}\left[w_{1}\right]$ we have $\beta\left(w_{1}^{\ell}\right)=\ell w_{1}^{\ell+1}$, so $\operatorname{Ker} \beta$ is generated by the even powers of $w_{1}$, all of which are also in $\operatorname{Im} \beta$, and hence the $\beta$-homology of $\mathbb{Z}_{2}\left[w_{1}\right]$ is trivial in positive dimensions; we might remark that this had to be true since the calculation is the same as for $\mathbb{R} P^{\infty}$. For $\mathbb{Z}_{2}\left[w_{2 i}, \beta w_{2 i}\right]$ we have $\beta\left(w_{2 i}^{\ell}\left(\beta w_{2 i}\right)^{m}\right)=\ell w_{2 i}^{\ell-1}\left(\beta w_{2 i}\right)^{m+1}$, so $\operatorname{Ker} \beta$ is generated by the monomials $w_{2 i}^{\ell}\left(\beta w_{2 i}\right)^{m}$ with $\ell$ even, and such monomials with $m>0$ are in $\operatorname{Im} \beta$. Hence $\operatorname{Ker} \beta / \operatorname{Im} \beta=\mathbb{Z}_{2}\left[w_{2 i}^{2}\right]$.

For $n=2 k, \mathbb{Z}_{2}\left[w_{1}, \cdots, w_{2 k}\right]$ is the tensor product of the $\mathbb{Z}_{2}\left[w_{2 i}, \beta w_{2 i}\right]$ 's for $i<k$ and $\mathbb{Z}_{2}\left[w_{1}, w_{2 k}\right]$, with $\beta\left(w_{2 k}\right)=w_{1} w_{2 k}$. We then have the formula $\beta\left(w_{1}^{\ell} w_{2 k}^{m}\right)=$ $\ell w_{1}^{\ell+1} w_{2 k}^{m}+m w_{1}^{\ell+1} w_{2 k}^{m}=(\ell+m) w_{1}^{\ell+1} w_{2 k}^{m}$. For $w_{1}^{\ell} w_{2 k}^{m}$ to be in $\operatorname{Ker} \beta$ we must have $\ell+m$ even, and to be in $\operatorname{Im} \beta$ we must have in addition $\ell>0$. So $\operatorname{Ker} \beta / \operatorname{Im} \beta=$ $\mathbb{Z}_{2}\left[w_{2 k}^{2}\right]$.

Thus the homology of $\mathbb{Z}_{2}\left[w_{1}, \cdots, w_{n}\right]$ with respect to $\beta$ is the polynomial ring in the classes $w_{2 i}^{2}$, the mod 2 reductions of the Pontryagin classes. By general properties of Bocksteins this finishes the proof of part (a) of the theorem.

The case of $\tilde{G}_{n}$ is simpler since $w_{1}=0$, hence $\beta w_{2 i}=w_{2 i+1}$ and $\beta w_{2 i+1}=0$. Then we can break $\mathbb{Z}_{2}\left[w_{2}, \cdots, w_{n}\right]$ up as the tensor product of the chain complexes $\mathbb{Z}_{2}\left[w_{2 i}, w_{2 i+1}\right]$, plus $\mathbb{Z}_{2}\left[w_{2 k}\right]$ when $n=2 k$. The calculations are quite similar to those we have just done, so further details will be left as an exercise.

## Exercises

1. Show that every class in $H^{2 k}\left(\mathbb{C P}^{\infty}\right)$ can be realized as the Euler class of some vector bundle over $\mathbb{C P}^{\infty}$ that is a sum of complex line bundles.
2. Show that $c_{2 i+1}\left(E^{\mathbb{C}}\right)=\beta\left(w_{2 i}(E) w_{2 i+1}(E)\right)$.
3. For an oriented $(2 k+1)$-dimensional vector bundle $E$ show that $e(E)=\beta w_{2 k}(E)$.

## Bibliography

## Books

M. F. Atiyah, K-Theory, W. A. Benjamin, 1967.
R. Bott, Lectures on $K(X)$, W. A. Benjamin, 1969.
J. Dieudonné, A History of Algebraic and Differential Topology 1900-1960, Birkhäuser, 1989.
W. Fulton, Young Tableaux, Cambridge Univ. Press, 1997.
H. Hiller, Geometry of Coxeter Groups, Pitman, 1982.
D. Husemoller, Fibre Bundles, McGraw-Hill, 1966 (later editions by Springer-Verlag).
M. Karoubi, K-Theory: An Introduction, Springer-Verlag, 1978.
S. LANG, Algebra, Addison-Wesley, 1965.
J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton Univ. Press, 1974.
N. Steenrod, Topology of Fiber Bundles, Princeton Univ. Press, 1951.
R. Stong, Notes on Cobordism Theory, Princeton Univ. Press, 1968.
B. L. VAN DER WAERDEN, Modern Algebra, Ungar, 1949.

## Papers

J. F. ADAMS, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
J. F. ADAMS, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
J. F. ADAMS, On the groups $J(X)$ IV, Topology 5 (1966), 21-71.
J. F. Adams and M. F. Atiyah, K-theory and the Hopf invariant, Quart. J. Math. 17 (1966), 31-38.
M. Atiyah and F. Hirzebruch, Vector Bundles and Homogeneous Spaces, Proc. Sym. Pure Math.. III (1961), 7-38.
M. Atiyah, Vector bundles and the Künneth formula, Topology 1 (1962), 245-248.
M. Atiyah, Power Operations in K-Theory, Quart. J. Math. Oxford. 17 (1966), 165-193.
M. ATIYAH, K-Theory and reality, Quart. J. Math. Oxford. 17 (1966), 367-386.
M. Atiyah and R. Bott, On the periodicity theorem for complex vector bundles, Acta Math. 112 (1964), 229-247.
M. Atiyah, R. Bott and A. Shapiro, Clifford Modules, Topology 3 (1964), 3-38.
R. Bott and J. MilnOR, On the parallelizability of spheres, Bull. A.M.S. 64 (1958), 87-89.
R. Bott, The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313-337.
L. Hodgkin, On the K-Theory of Lie groups, Topology. 6 (1967), 1-36.
M. MAHOWALD, The order of the image of the J-homomorphism, Bull. A.M.S. 76 (1970), 13101313.
J. MILNOR, Some consequences of a theorem of Bott, Ann. of Math. 68 (1958), 444-449.
D. Quillen, The Adams conjecture, Topology 10 (1971), 67-80.
D. SuLLIVAN, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100 (1974), 1-79.
L. M. Woodward, Vector fields on spheres and a generalization, Quart. J. Math. Oxford. 24 (1973), 357-366.

